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ABSTRACT 
Effect of sublethal (0.25%) concentration of electroplating Industrial effluent chromium on bimodal 
respiratory rhythm of Mystus cavasius (Ham) was studied. Result revealed that at sublethal concentration 
the respiratory rhythm was significantly disrupted. The significance of the results is discussed from a 
chronotoxicological point of view.  
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INTRODUCTION  
 
Most organisms adapt the timing of their 
physiology to the cyclic changes of their 
environment using intrinsic timekeeping systems 
called circadian clocks. In the absence of external 
cues, circadian clocks can sustain rhythms of 
about 24 hours hence the name circadian, meaning 
‘about a day’ - for extended periods of time. 
Environmental cues can reset daily the phase of 
molecular internal rhythms, ensuring that the 
organism’s behaviour remains tied to the rhythms 
in its environment. The main resetting cue for 
animals is light, provided by the day-night cycles 
(Cermakian and Sassone-Corsi, 2000;   Reppert  
and Weaver, 2001 and Young  and Kay, 2001).  
 
Two sources of oxygen are potentially available to 
fishes. While most use only dissolved oxygen 
(water breathing or aquatic respiration), others 
(Lowe-McConnell 1975) have the ability to obtain 
oxygen from the atmosphere (air breathing or 
aerial respiration). All air-breathing fishes also use 
dissolved oxygen to some extent (bimodal 
breathing), but vary considerably in the 
proportional use of each respiratory mode 
(Johansen 1970; Rahn and Howell 1976; Singh 
1976). Some species have reduced gills and, even 
in normoxic water, must use some atmospheric 
oxygen to meet their total oxygen demands 
(obligate air breathers). Other bimodal species 

have a greater water- breathing capacity, and air 
breathing is not required to meet their total 
oxygen demand, even under moderately hypoxic 
conditions (facultative air breathers). 
Physiological studies of short- term changes in 
respiratory partitioning have revealed two broad 
classes of controlling factors: those that influence 
total oxygen demand, e.g., temperature, activity, 
and ration, and those that influence the efficiency 
of oxygen uptake, e.g., the partial pressure of 
dissolved oxygen and carbon dioxide (Johansen 
1970; Singh 1976; Kramer 1983). 
 
 Bimodal air-breathing fishes are noted for their 
resistance to environmental stress and aquatic 
hypoxia (Dehadrai and Tripathi, 1976). A number 
of attempts have been made earlier to relate 
respiration to ecology in Indian air-breathing 
fishes (Saxena, 1963; Dehadrai and Tripathi, 
1976). Respiratory strategies appear to have 
important implications for many other aspects of a 
species physiology, behaviour and ecology 
(Kramer et al 1978). Ballintijn, C (1987) reported 
that respiratory rhythm apparently originates in a 
diffuse respiratory pattern generator in the 
reticular formation, and this remains functional 
under anesthesia. Brainerd (1994) has suggested 
separate origins for air-pumping mechanisms in 
actinopterygian fishes (derived from the suction 
feeding/coughing pumps) and sarcoptergian lung 

fish and amphibians (the branchial irrigation 
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pump). For water - breathing fish, toxicity of a 
wide range of substance increases as dissolved 
oxygen (DO) decreases (Lioyd, 1961). The 
increase in toxicity is due to an increased rate of 
ventilation in hypoxic water. But in bimodally 
breathing fish, hypoxic conditions cause a 
decrease in toxicity. At low oxygen levels these 
fishes shut gill ventilation and rely mainly on air-
breathing (Graham et al., 1978). Several studies 
have shown that oxygen (O2

Hughes and Singh (1970 b) have reported  that 
Anabas consumes a little more O

) consumption of 
dogfish (Scyliorhinus canicula) gill tissue is 
significantly inhibited following in vivo lethal and 
sublethal treatment of Zinc  
(Tort et al., 1982). It also affects cardiac and 
ventilatory rhythms (Hughes and Adeney, 1977).    

2 from air (54%) 
than from water (46%) of its total O2 uptake 
(11.34 ml/kg /hr) during bimodal respiration.  
Clarias also consumes more O2 from air (58%) 
than from normoxic waters (42%) and its total O2 
consumption is 93.4 ml/ kg/ h (Singh and Hughes, 
1971). In C. gachua the major portion of the O2 
requirement was met by the air-breathing organ 
and gills plays a minor role to the time of about 
21% only in the gaseous exchange (Natarajan, 
1979). Boleophthalmus boddaerti of 7.96 g body 
weight extracted only 41.8% through aerial route 
(Biswas et al., 1979). Mystus gulio consumes 
nearly 76% of total O2

MATERIALS AND METHODS  

 demand through skin and 
gills (Natarajan, 1979). 
 
Chromium appears to pass through readily the gill 
membrane and accumulates rapidly in various 
tissues at higher levels than in the gills (Holdway, 
1988), including the brain, gall bladder, gastro-
intestinal tract, intestine, kidney, opercular bone, 
spleen and stomach (Buhler et al., 1977; Van der 
Putte et al., 1981 b). Studies on the circadian 
rhythm of bimodal oxygen consumption in air-
breathing fishes are limited (Natarajan, 1987; Rani, 
1994; Vijayalakshmi, 1996 and Mallikaraj, 2004). 
Practically nothing is known about the diurnal 
variations in the respiratory metabolism of Mystus 
cavasius and the modulation of the same by waste 
water exposure. 

Healthy adult fish Mystus cavasius (14 - 22 gm 
weight and 12 - 18 cm length) were collected and 
acclimated to the laboratory conditions with 
softened tap water under the following conditions: 
Ca, 0.725 mm; Mg, 0.135 mm; pH 7.1 ± 0.4; D.O, 

7.4 ± 0.2 mg/ l. Water was checked daily for NH3, 
nitrite, and nitrate and replaced every 2 days for 
half of the volume. Water was filtered with a 
trickling filter and biological kits were used for 
NH3, nitrite and nitrate measurements to ensure 
that levels never exceeded 0.1, 1 and 20mg l –1, 
respectively. The percentage survival of 
M.cavasius at various concentrations of waste 
water was determined by adopting the procedure 
laid down by Doudoroff and Katz (1953) for 
industrial waste waters. The test medium was 
changed daily (Sprague, 1971) to maintain the 
constant toxic concentration. The LC50 value was 
obtained by Finney (1971). 1/3 of sublethal 
concentration (0.25%) was selected for sublethal 
treatment. The circadian rhythm of bimodal O2

Under laboratory conditions the control fish 
exhibited a clear-cut respiratory rhythm (Table-
1). Bimodal respiration in M. cavasius is strongly 
rhythmic. The unimodal peak period of maximum 
O

 
consumption of control and waste water exposed 
fish was determined at 3 hr intervals over a single 
24 hr period using the setup and procedures 
described already (Natarajan, 1987). The 
statistical significance of difference between 
control and treated groups of different exposure 
period were tested by using students‘t’ test (Zar, 
1984).   
 
RESULT AND DISCUSSION  

2 consumption through gills and air-breathing 
organs (ABO) occurs at 0600 hr. From 1800 hr 
onwards the ABO’s play an increasing role in 
obtaining more O2 from the air. However, very 
low aerial O2 consumption was recorded at 0900 
and 1200 hr. The O2 consumption from water and 
air showed a maximum at 0600 h.  The aquatic / 
aerial ratio in all these observation exceeds 1.84. 
The 24 hr Chromium exposure shifted the peak 
period of total maximum O2 uptake to 0000hr 
(Table 2). The 72 hr treatment altered the peak 
period of maximum O2 consumption to 1200 hr 
(Table 3). But, sublethal exposure significantly 
reduced the O2 uptake. This reduction has got no 
correlation with the time of the day. In the air-
breathing mud eel Amphipnous cuchia (Ojha et 
al., 1979), peak hours of O2 uptake were the dusk 
(16 - 18 hr) and the dawn (04 - 06 hr). However, 
in Channa marulius (Patra et al., 1979), the higher 
O2 uptake was recorded during mid-night. The 
diurnal rhythm of bimodal O2
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 uptake in the 
goramy (Osphronemus olfax: Natarajan, 1984), 
shows an unimodal peak period at 1200 hr. 
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Similarly, in the intestinal air-breather 
(Lepidocephalus thermalis: Natarajan, 1984) the 
peak period was obtained at 18 hr. Maximum O2 
consumption of Gobiusculus flavescens 
(Thetmeyer, 1997) was recorded during the day. 
Similarly, feeding rhythms (Boujard and 
Leatherland, 1992), locomotory rhythms (Sanchez 
– Vazquez and Tabala, 1998) and biofuel rhythms 
(Figueroa et al., 2000) were also reported for 
teleost. The light /dark alternation seems to be an 
important synchronizer for all these changes. 
However, the peak period of O2

  Table.1.Circadian rhythm of bimodal O

 consumption was 
completely eliminated in the toxified fish. 
Interestingly, a marked inhibition was noted at 

1500 hr and 0900 hr. Since the aquatic 
environment is severely polluted, dependence on 
aerial respiration is the only way for the survival 
of fish. This is clearly reflected in the increased 
rate of aerial respiration in the chromium exposed 
fish. The unimodal peak period was completely 
shifted to some other hour. The fish never 
regained or restored its original peak period in 
acute or chronic exposure.  From chrono-
toxicological points of view, the present findings 
are very useful. Application or discriminate 
release of Chromium concentrations will 
significantly alter the physiological rhythm of 
fish.

 
2 uptake (mlO2kg-1hr-1

    Time of  
    day (Hr) 

) of  M. cavasius  
(15 – 20g; N = 6) at 28° ± 1°C,  I – Day.  

   Aquatic     Aerial       Total % Aquatic % Aerial 
    Aquatic 
    ---------- 
     Aerial 

0600 90.32 ± 2.01 37.65 ± 3.02 127.97 ± 3.14 70.58 29.42 2.40 
0900 80.40 ± 3.11 26.50 ± 4.00 106.90 ± 3.40 75.21 24.79 3.03 
1200 76.15 ± 5.00 28.11 ± 3.46 104.26 ± 4.02 73.04 26.96 2.71 
1500 75.19 ± 2.94 30.18 ± 5.18 105.37 ± 3.80 71.36 28.54 2.49 
1800 72.00 ± 3.00 31.50 ± 4.01 103.50 ± 3.00 59.57 40.43 2.29 
2100 73.06 ± 2.88 31.00 ± 2.95 104.06 ± 2.82 70.21 29.29 2.45 
0000 70.18 ± 3.00 30.15 ± 1.17 100.33 ± 2.51 59.95 40.05 2.33 
0300 75.90 ± 6.00 33.20 ± 2.94 109.10 ± 4.06 59.57 40.43 2.29 

N = Number of fishes   
Each value is the mean of 6 individual determinations ± indicates SE 
Table 2. Effect of chromium rich (0.25%) effluent exposure (24 hr) on the circadian rhythm of bimodal O2 uptake 

(mlO2kg-1hr-1

Time of  
day (Hr) 

) of M.cavasius (10–20g; N = 6) at 28° ± 1°C. 

Aquatic Aerial Total % aquatic      % Aerial 
      Aquatic 

        -------------  
     Aerial 

0600 69.40 ± 1.82 31.40 ± 4.00 100.80 ± 2.65 58.85 41.15         2.21 
0900 70.10 ± 2.19 30.15 ± 2.44 100.25 ± 2.30 59.93 40.07         2.33 
1200 65.19 ± 3.00 28.19 ± 1.65 93.38 ± 2.16 59.81 40.19         2.31 
1500 71.30 ± 2.80 31.40 ± 2.00 102.70 ± 3.05 69.43 30.57         2.27 
1800 69.60 ± 3.05 33.19 ± 2.17 102.79 ± 3.00 57.71 42.29         2.09 
2100 66.17 ± 2.84 36.05 ± 1.94 102.22 ± 2.51  54.73 45.27         1.84 
0000 67.20 ± 3.00 35.90 ±1.79 103.10 ± 2.21 55.18 44.82         1.87 
0300 66.15 ± 2.76 33.80 ± 3.67 99.95 ± 2.74 56.18 43.82         1.96 

P<0.05.  Each value is the mean of 6 individual determinations ± indicates SE 
The signs + or – indicate percent increase or decrease over control  
Table 3. Effect of chromium rich (0.25%) effluent exposure (72 hr) on the circadian rhythm of bimodal O2 uptake 

(mlO2kg-1hr-1

Time of  
day (Hr) 

) of M.cavasius (10 – 20g; N = 6) at 28° ± 1°C. 

Aquatic Aerial Total % aquatic % Aerial 
     Aquatic 

      ------------ 
     Aerial 

0600 61.15 ± 3.00 38.15 ± 2.00    99.30 ± 2.30 51.58 48.42 1.60 
0900 66.17 ± 2.91 33.20 ± 1.80    99.37 ± 2.80 56.59 43.41 1.99 
1200 65.00 ± 4.00 37.15 ± 2.60   102.15 ± 3.43 53.63 46.37 1.74 
1500 64.15 ± 2.91 35.00 ± 4.06    99.15 ± 3.32 54.70 45.30 1.83 
1800 62.00 ± 1.86 36.00 ± 3.19    98.00 ± 2.80 53.27 46.73 1.72 
2100 60.94 ± 2.00 35.19 ± 4.00    96.13 ± 3.05 53.39 46.61 1.73 
0000 59.05 ± 1.65 36.00 ± 2.15    95.05 ± 2.46 52.13 47.87 1.64 
0300 60.30 ± 1.96 35.00 ± 2.90    95.30 ± 2.48 53.27 46.73 1.72 

P<0.05.  Each value is the mean of 6 individual determinations ± indicates SE 
The signs + or – indicate percent increase or decrease over control  
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