

International Journal of Pharmaceutical & Biological Archives 2011; 2(5):1357-1373

REVIEW ARTICLE

Resealed Erythrocytes as a Carrier for Drug Targeting: A Review

Devendra Singh, Manish Kumar*, Talever Singh, L. R. Singh, Dashrath Singh

Dept of Pharmacy, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, U. P., India

Received 02 Jul 2011; Revised 28 Sep 2011; Accepted 07 Oct 2011

ABSTRACT

Erythrocytes are the most abundant cells in the human body (~5.4 million cells/mm³ blood in a healthy male and ~ 4.8 million cells/mm³ blood in a healthy female) having potential carrier capabilities for the delivery of drugs and drug loaded microspheres. Drug-loaded carrier erythrocytes (resealed erythrocytes) are prepared simply by collecting blood samples from the organism of interest, separating erythrocytes from plasma, entrapping drug in the erythrocytes, and resealing the resultant cellular carriers. encouraging the use of erythrocytes in drug delivery include various advantages like as remarkable degree of biocompatibility, Complete biodegradability, lack of toxic product, controllable life-span, decreasing drug side effects etc. In this review we discuss about Resealing of erythrocytes, various techniques of drug loading such as hypotonic hemolysis, hypotonic dilution, hypotonic pre-swelling, isotonic osmoticlysis, Chemical perturbation of the membrane, Electro-insertion, Entrapment by endocytosis etc. and it's applications in various fields of human and veterinary medicine.

Key Words: Resealed erythrocytes, Carrier, Drug loading, Electro-insertion.

INTRODUCTION

Present pharmaceutical scenario is aimed at development of drug delivery systems which maximize the drug targeting along with high therapeutic benefits for safe and effective management of diseases^[1]. Targeting of an active biomolicule from effective drug delivery where pharmacological agent directed specifically to its target site. Drug targeting can be approaches by either chemical modification or by appropriate carrier. Various drug delivery carriers has been investigated presently like nonoparticle, microspheres, lipid vesicular carrier, microemulsion, aquasomes, pharmacosomes, ethosomes, cellular carrier and macromolecule ^[2]. The targeted or sitespecific delivery of drugs is indeed a very attractive goal because this provides one of the most potential ways to improve the therapeutic index (TI) of drug whilst devoiding its potential interaction with non-targeted tissue^[3]. Various carriers has been used for the drug targeting among which cellular carrier offer a greater potential advantages related to its biodegradability, non-pathogenicity, nonimmunogenicity, biocompatibility, self degradability along with high drug loading efficiency. Leukocytes, platelets and erythrocytes have been proposed as cellular carrier systems.

Erythrocytes have been the most interesting carrier and have found to possess great potential in drug targeting. Resealed erythrocytes are gaining more popularity because of their ability to circulate throughout the body, biocompatibility, zero order release kinetics, reproducibility and ease of preparation. Most of the resealed erythrocytes used as drug carriers are rapidly taken up from blood by macrophages of reticuloendothelial system (RES), which is present in liver, lung, and spleen of the body ^[4]. The aim of the present review is to focus on the various features, drug loading technology and biomedical application of resealed erythrocytes.

History:

The first person to describe red blood cells was the young Dutch biologist Jan Swammerdam, who had used an early microscope in 1658 to study the blood of a frog ^[5]. Unaware of this work, Anton van Leeuwenhoek provided another microscopic description in 1674, this time providing a more precise description of red blood cells, even approximating their size, "25,000 times smaller than a fine grain of sand". In 1901 Karl Landsteiner published his discovery of the three main blood groups-A, B, and C (which he later renamed to O). Landsteiner described the regular patterns in which reactions occurred when serum

*Corresponding Author: Manish Kumar, Email: manishpharma20@gmail.com, Phone No: +91-7895761770

was mixed with red blood cells, thus identifying compatible and conflicting combinations between these blood groups. A year later Alfred von Decastello and Adriano Sturli, two colleagues of Landsteiner, identified a fourth blood group-AB.In 1959, by use of X-ray crystallography, Dr. Max Perutz was able to unravel the structure of hemoglobin, the red blood cell protein that carries oxygen ^[6].

Erythrocytes:

Red blood cells (also referred to as ervthrocytes) are the most common type of blood cells and the vertebrate organism's principal means of delivering oxygen (O_2) to the body tissues via the blood flow through the circulatory system. They take up oxygen in the lungs or gills and release it while squeezing through the body's capillaries. These cells' cytoplasm is rich in hemoglobin, an iron-containing bimolecule that can bind oxygen and is responsible for the blood's red color. In humans, mature red blood cells are flexible biconcave disks that lack a cell nucleus and most organelles. 2.4 million new ervthrocytes are produced per second ^[7].

The cells develop in the bone marrow and circulate for about 100–120 days in the body before their components are recycled by macrophages. Each circulation takes about 20 seconds. Approximately a quarter of the cells in the human body are red blood cells. Red blood cells are also known as RBCs, red blood corpuscles (an archaic term), haematids, erythroid cells or erythrocytes (from Packed red blood cells, which are made from whole blood with the plasma removed, are used in transfusion medicine.

Resealed Erythrocytes:

Such drug-loaded carrier erythrocytes are prepared simply by collecting blood samples from the organism of interest, separating erythrocytes from plasma, entrapping drug in the erythrocytes, and resealing the resultant cellular carriers^[8]. Hence, these carriers are called resealed erythrocytes.

Note: The overall process is based on the response of these cells under osmotic conditions. Upon reinjection, the drug-loaded erythrocytes serve as slow circulating depots and target the drugs to a reticuloendothelial system (RES)^[9].

Morphology and physiology of erythrocytes:

Erythrocytes are the most abundant cells in the human body (~5.4 million cells/mm³ blood in a healthy male and ~4.8 million cells/mm³ blood in a healthy female). These cells were described in

human blood samples by Dutch Scientist Lee Van Hock in 1674.

In the 19th century, Hope Seyler identified hemoglobin and its crucial role in oxygen delivery to various parts of the body ^[10]. Erythrocytes are biconcave discs with an average diameter of 7.8 m, a thickness of 2.5 m in periphery, 1 m in the center, and a volume of $85-91 \text{ m}^{3[11]}$. The flexible, biconcave shape enables erythrocytes to squeeze through narrow capillaries, which may be only 3 m wide. Mature ervthrocytes are quite simple in structure. They lack a nucleus and other organelles. Their plasma membrane encloses hemoglobin, a heme-containing protein that is responsible for O_2 -CO₂ binding inside the erythrocytes. The main role of erythrocytes is the transport of O_2 from the lungs to tissues and the CO_2 produced in tissues back to lungs. Thus erythrocytes are a highly specialized O_2 carrier system in the body. Because a nucleus is absent, all the intracellular space is available for O_2 transport. Also, because mitochondria are absent and because energy is generated anaerobically in erythrocytes, these cells do not consume any of the oxygen they are carrying. Erythrocytes live only about 120 days because of wear and tear on their plasma membranes as they squeeze through the narrow blood capillaries. Worn-out erythrocytes are removed from circulation and destroyed in the spleen and liver reticuloendothelial (RES), and the breakdown products are recycled. The process of erythrocyte formation within the body is known as erythropoiesis. In a mature human being, erythrocytes are produced in red bone marrow under the regulation of a hemopoietic hormone called erythropoietin^[12].

Isolation of erythrocytes:

- Blood is collected into heparin zed tubes by venipunture.
- Blood is withdrawn from cardiac /splenic puncture (in small animal) and through veins (in large animals) in a syringe containing a drop of anti coagulant.
- The whole blood is centrifuged at 2500 rpm for 5 min. at 4 ± 1^{0} C in a refrigerated centrifuge.
- The serum and buffy coats are carefully removed and packed cells washed three times with phosphate buffer saline (pH=7.4).
- The washed erythrocytes are diluted with PBS and stored at 4°C until used.

Various types of mammalian erythrocytes have used for drug delivery, been including erythrocytes of mice, cattle, pigs, dogs, sheep, goats, monkeys, chicken, rats, and rabbits. To isolate erythrocytes, blood is collected in heparinized tubes by venipunture. Fresh whole blood is typically used for loading purposes because the encapsulation efficiency of the erythrocytes isolated from fresh blood is higher than that of the aged blood. Fresh whole blood is the blood that is collected and immediately chilled to 4 C and stored for less than two days. The erythrocytes are then harvested and washed by centrifugation. The washed cells are suspended in buffer solutions at various hematocrit values as desired and are often stored in acid-citratedextrose buffer at 4[°] C for as long as 48 h before use. Jain and Vyas have described a wellprotocol for the isolation established of ervthrocytes ^[13]. Erythrocyte ghost can be used as adenosine triphosphate (ATP)^[14].

Entrapment of dextran (molecular weight 10–250 kDa) and loading of drugs in erythrocytes was reported separately ^[15]. *Carrier erythrocytes* were coined to describe drug-loaded erythrocytes ^[16].

Advantages of resealed erythrocytes as drug carriers:

The resealed erythrocytes should have the following advantages:

- Their biocompatibility, particularly when autologous cells are used, hence no possibility of triggered immune response [13,16,17,18,19]
- Their biodegradability with no generation of toxic products ^[12,13,20,21,22].
- The considerably uniform size and shape of the carrier ^[10,11,23].
- Relatively inert intracellular environment [24].
- Prevention of degradation of the loaded drug from inactivation by endogenous chemicals^[4,18, 19,20,25].
- The wide variety of chemicals that can be entrapped ^[18,25,26,27,28].
- The modification of pharmacokinetic and pharmacodynamic parameters of drug [16,20,29].
- Attainment of steady-state plasma concentration decreases fluctuations in concentration^[16,17, 30,31,32].
- Protection of the organism against toxic effects of drugs (e.g. antineoplastics)^[26].
- They are ability to circulate throughout the body ^[13] the availability of the techniques

and facilities for separation, handling, transfusion, and working with erythrocytes [17,18].

- Improvement in oxygen delivery to tissues.
- The prevention of any undesired immune response against the loaded drug^[24].
- Their ability to target the organs of the RES^[13,17,18,33].
- The possibility of ideal zero-order drug-release kinetics ^[34].
- The lack of occurrence of undesired immune response against encapsulated drug^[13].
- The large quantity of drug that can be encapsulated within a small volume of cells ensures dose sufficiency^[13,18,22].
- A longer life span in circulation as compared with other synthetic carriers ^[19,35,36] and optimum conditions may result in the life span comparable to that of normal erythrocytes^[33, 37,38].
- Easy control during life span ranging from minutes to months^[19].
- A decrease in side effects of drugs^[17,29,32].
- A considerable increase in drug dosing interval with drug residing in therapeutic window region for longer time periods [17,29,31,33].

Methods of drug loading in resealed erythrocytes:

Several methods can be used to load drugs or other bioactive compounds in erythrocytes, including physical (e.g., electrical pulse method) osmosis-based systems, and chemical methods (e.g., chemical perturbation of the erythrocytes membrane). Irrespective of the method used, the characteristics for optimal the successful entrapment of the compound requires the drug to have a considerable degree of water solubility, resistance against degradation within erythrocytes, lack of physical or chemical interaction with ervthrocvte membrane. and well-defined pharmacokinetic and pharmacodynamic properties [39]

The several methods are giving in follows:

- Hypotonic hemolysis method
- Use of red cell loader method
- Hypotonic dilution method
- Hypotonic preswelling
- Hypotonic dialysis
- Isotonic osmotic lysis
- Chemical perturbation of the membrane
- Electro-insertion or electro encapsulation

- Entrapment by endocytosis
- Loading by electric cell fusion
- Loading by lipid fusion.

Hypotonic hemolysis:

This method is based on the ability of erythrocytes to undergo reversible swelling in a hypotonic solution. Erythrocytes have an exceptional capability for reversible shape changes with or without accompanying volume change and for reversible deformation under stress. An increase in volume leads to an initial change in the shape from biconcave to spherical. This change is attributable to the absence of superfluous membrane; hence, the surface area of the cell is fixed. The cells assume a spherical shape to accommodate additional volume while keeping the surface area constant. The volume gain is 25-50%. The cells can maintain their integrity up to a tonicity of 150 mos m/kg, above which the membrane ruptures, releasing the cellular contents. At this point (just before Cell lysis), some transient pores of 200–500 Å are generated on the membrane. After cell lysis, cellular contents are depleted. The remnant is called an *erythrocyte ghost*^[16,27,40,41]. The principle of using these ruptured erythrocytes as drug carriers is based on the fact that the ruptured membranes can be resealed by restoring isotonic conditions. Upon the cells resume incubation. their original biconcave and recover original shape impermeability^[27,40, 41].

Use of red cell loader:

Novel method was developed for entrapment of They nondiffusible drugs into erythrocytes. developed a piece of equipment called a "red cell loader" ^[42]. With as little as 50 ml of a blood sample, different biologically active compounds were entrapped into erythrocytes within a period of 2 h at room temperature under blood banking conditions. The process is based on two sequential hypotonic dilutions of washed erythrocytes followed by concentration with a hemofilter and an isotonic resealing of the cells. There was 30% drug loading with 35-50% cell recovery. The processed erythrocytes had normal survival in vivo. The same cells could be used for targeting by improving their recognition by tissue macrophages.

Hypotonic dilution:

Hypotonic dilution was the first method investigated for the encapsulation of chemicals into erythrocytes ^[15] and is the simplest and fastest ^[16]. In this method, a volume of packed erythrocytes is diluted with 2–20 volumes of

aqueous solution of a drug. The solution tonicity is then restored by adding a hypertonic buffer. The resultant mixture is then centrifuged, the supernatant is discarded, and the pellet is washed with isotonic buffer solution^[15,27]. The major drawbacks of this method include low entrapment efficiency^[15, 18, 22, 32, 43] and a considerable loss of hemoglobin and other cell components^[13,25,35]. This reduces the circulation half life of the loaded cells. These cells are readily phagocytosed by RES macrophages and hence can be used for targeting RES organs^[15,27]. Hypotonic dilution is used for loading enzymes such as galactosidase and glucosidase^[15], asparginase^[37,44], and arginase^[24], as well as bronchodilators such as salbutamol

Hypotonic preswelling:

This method was developed by Rechsteiner^[46] in 1975 and was modified by Jenner et al. for drug loading. The technique is based upon initial controlled swelling in a hypotonic buffered solution. This mixture is centrifuged at low gvalues. The supernatant is discarded and the cell fraction is brought to the lysis point by adding 100–120 Ltrs portions of an aqueous solution of the drug to be encapsulated. The mixture is centrifuged between the drug-addition steps. The lysis point is detected by the disappearance of a distinct boundary between the cell fraction and the supernatant upon centrifugation. The tonicity of a cell mixture is restored at the lysis point by adding a calculated amount of hypertonic buffer. Then, the cell suspension is incubated at $37^{\circ}C$ to reanneal the resealed erythrocytes ^[27,32]. Such cells have a circulation half life comparable to that of normal cells^[16,27,32,47]. This method is simpler and faster than other methods, causing minimum damage to cells. Drugs encapsulated in erythrocytes using this method include propranolol^[30], asparginase ^[23], cyclopohphamide, ,1-antitrypsin^[32], methotrexate, insulin ^[32,48], metronidazole^[22], levothyroxine^[47], enalaprilat^[49], and isoniazid ^[50].

Hypotonic dialysis:

This method was first reported by Klibansky^[51] in 1959 and was used in 1977 by Deloach and Ihler ^[43], and Dale^[52] for loading enzymes and lipids. Several methods are based on the principle that semipermeable dialysis membrane maximizes the intracellular:extracellular volume ratio for macromolecules during lysis and resealing. In the process, an isotonic, buffered suspension of erythrocytes with a hematocrit value of 70–80 is prepared and placed in a conventional dialysis

tube immersed in 10-20 volumes of a hypotonic buffer. The medium is agitated slowly for 2 h. The tonicity of the dialysis tube is restored by directly adding a calculated amount of a hypertonic buffer to the surrounding medium or by replacing the surrounding medium by isotonic buffer ^[27,43]. The drug to be loaded can be added by either dissolving the drug in isotonic cell suspending buffer inside a dialysis bag at the beginning of the experiment ^[34,27,53,54] or by adding the drug to a dialvsis after the stirring dialysis bag after complete^[40,43,55,56,57]. The is use of standard hemodialysis equipment for loading a drug in erythrocytes was reported by Roper et al. ^[58]. In this method, the erythrocyte suspension and the drug to be loaded were placed in the blood compartment and the hypotonic buffer was placed in a receptor compartment. This led to the concept of "continuous flow dialysis," which has been several other researchers^{[40,} by used 54,56,58,59,60,61,62]

The loaded cells exhibit the same circulation half life as that of normal cells ^[16,35] Also, this method has high entrapment efficiency on the order of 30-50% [18,35,40,43], cell recovery of 70-80%, high-loading capacity ^[58,63] and is amenable to automation with control of process variables [40,64]. The drawbacks include a long processing time [18,35,43] and the need for special equipment [27] This method has been used for loading galactosidase. enzymes such as glucoserebrosidase^[32], asparginase^[54], inositol hexaphosphatase^[60,62], as well as drugs such as gentamicin^[34] adriamycin^[53], pentamidine and furamycin^[55], interlukin-2^[57], desferroxamine ^[58,59,61,63], and human recombinant erythropoietin [65]

Isotonic osmotic lysis:

This method, also known as the osmotic pulse method, involves isotonic hemolysis that is achieved by physical or chemical means. The isotonic solutions may or may not be isoionic. If erythrocytes are incubated in solutions of a substance with high membrane permeability, the solute will diffuse into the cells because of the concentration gradient. This process is followed by an influx of water to maintain osmotic equilibrium. Chemicals such as urea solution^[6], polyethylene glycol^[67] and ammonium chloride have been used for isotonic hemolysis. However, this method also is not immune to changes in membrane structure composition. In 1987. Francoet al. developed a method that involved suspending erythrocytes in an isotonic solution of dimethyl sulfoxide $(DMSO)^{[48]}$. The suspension was diluted with an isotonic-buffered drug solution. After the cells were separated, they were resealed at 37^{0} C.

Chemical perturbation of the membrane:

This method is based on the increase in membrane permeability of erythrocytes when the cells are exposed to certain chemicals. Permeability of erythrocytic membrane increases upon exposure to polyene antibiotic such as amphotericin $B^{[68]}$. In 1980, this method was used successfully to entrap the antineoplastic drug daunomycin in human and mouse erythrocytes ^[69,70]. However, these methods induce irreversible destructive changes in the cell membrane and hence are not very popular.

Electro-insertion or electro encapsulation:

In 1973, Zimmermann tried an electrical pulse method to encapsulate bioactive molecules ^[21]. Also known as electroporation, the method is based on the observation that electrical shock brings about irreversible changes in an erythrocyte membrane.

In 1977, Tsong and Kinosita suggested the use of transient electrolysis to generate desirable membrane permeability for drug loading ^[33].

The erythrocyte membrane is opened by a dielectric breakdown. Subsequently, the pores can be resealed by incubation at 37^{0} C in an isotonic medium.

The procedure involves suspending erythrocytes in an isotonic buffer in an electrical discharge chamber. A capacitor in an external circuit is charged to a definite voltage and then discharged within a definite time interval through cell suspension to produce a square-wave potential^{[33,} ^{35]}. The optimum intensity of an electric field is between 1-10 kW/cm and optimal discharge time 20-160^[17,35,71,72] An is between inverse relationship exists between the electric-field intensity and the discharge time $[^{33,35]}$. The compound to be entrapped is added to the medium in which the cells are suspended from the experiment. commencement of the The characteristic pore diameter created in the membrane depends upon the intensity of electric field, the discharge time, and the ionic strength of medium^[9,38,73] suspending The colloidal macromolecules contents of the cell may lead to cell lysis because of the increase in osmotic pressure. This process can be prevented by adding large molecules (e.g., tetrasaccharide stachyose and bovine serum albumin) and ribonucleose. One advantage of this method is a more uniform distribution of loaded cells in comparison with

osmotic methods ^[35]. The main drawbacks are the for special instrumentation and need the sophistication of the process^[17,18,22,40]. Entrapment efficiency of this method is 35% [31], and the life span of the resealed cells in circulation is comparable with that of normal cells^[33, 35]. Various compounds such as sucrose^[33,71]. urease^[71], methotrexate ^[72], isoniazid^[74], human glycophorin^[75], DNA fragments, and latex particles of diameter 0.2 $m^{[35]}$ can be entrapped within erythrocytes by this method. Mangal and Kaur achieved sustained release of a drug entrapped in erythrocytes with the use of electroporation^[76].

Entrapment by endocytosis:

This method was reported by Schrier et al. in 1975 ^[77]. Endocytosis involves the addition of one volume of washed packed erythrocytes to nine volumes of buffer containing 2.5 mM ATP, 2.5 mM MgCl₂, and 1mM CaCl₂, followed by incubation for 2 min at room temperature. The pores created by this method are resealed by using 154 mm of NaCl and incubation at 37° C for 2 min. The entrapment of material occurs by endocytosis. The vesicle membrane separates endocytosed material from cytoplasm thus protecting it from the erythrocytes and vice-versa. The various candidates entrapped by this method primaquine and related 8-aminoinclude quinolines. vinblastine, chlorpromazine and related phenothiazines. hydrocortisone, propranolol, tetracaine, and vitamin A^[36,78,79].

Loading by electric cell fusion:

This method involves the initial loading of drug molecules into erythrocyte ghosts followed by adhesion of these cells to target cells. The fusion is accentuated by the application of an electric pulse, which causes the release of an entrapped molecule. An example of this method is loading a cell-specific monoclonal antibody into an erythrocyte ghost^[72,80]. An antibody against a specific surface protein of target cells can be chemically cross-linked to drug-loaded cells that would direct these cells to desired cells.

Loading by lipid fusion:

Lipid vesicles containing a drug can be directly fused to human erythrocytes, which lead to an exchange with a lipid entrapped drug. This technique was used for entrapping inositol monophosphate to improve the oxygen carrying capacity of cells ^[81]. However, the entrapment efficiency of this method is very low (1%).

In vitro characterization:

The in vivo performance of resealed erythrocytes is affected to a great extent by their biological properties. Hence, in vitro characterization forms an important part of studies involving such cellular carriers. The morphology of erythrocytes decides their life span after administration. Light microscopy reveals no observable change in resealed cells^[22,43] but in few cases spherical erythrocytes (spherocytes) are detected^[31,50]. Scanning electron microscopic studies have shown that a majority of the cells maintain their biconcave discoid shapes after the loading procedure^[56], and few stomatocytes—a form of spherocytes with an invagination in one point are formed^[65]. In some cases, cells of smaller size (microcyte) are also observed ^[62]. Shape change (deformability) is another factor that affects the life span of the cells. This parameter evaluates the ease of passage of erythrocytes through narrow capillaries and the RES. It determines the rheological behavior of the cells and depends on the viscoelasticity of the cell membrane, viscosity of the cell contents, and the cellular surface-tovolume ratio^[63].

The deformability is measured by passage time of definite volume of cells through capillary of 4 μ m diameter or polycarbonate filter with average pore size of 45 μ m ^[58,63]. Another indirect approach is to evaluate chlorpromazine induced shape changes turbidimetrically^[82]. The osmotic fragility of resealed erythrocytes is an indicator of the possible changes in cell membrane integrity and the resistance of these cells to osmotic pressure of the suspension medium.

The test is carried out by suspending cells in media of varying sodium chloride concentration and determining the hemoglobin released ^[22,82]. In most cases, osmotic fragility of resealed cells is higher than that of the normal cells ^[22,31,50,65,82]. because of increased intracellular osmotic pressure. The turbulence fragility is yet another characteristic that depends upon changes in the integrity of cellular membrane and reflects resistance of loaded cells against hemolysis resulting from turbulent flow within circulation. It is determined by the passage of cell suspension through needles with smaller internal diameter $(e.g., 30 \text{ gauge})^{[22,31,50,83]}$ or vigorously shaking the cell suspension^[82]. In both cases, hemoglobin and drug released after the procedure are determined. The turbulent fragility of resealed cells is found to higher^[22,31,50,82,83]. Routine be clinical hematological tests also can be carried out for

drug-loaded cells, including mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin content. Studies have shown that the average size and hemoglobin content of resealed cells is lower than that of normal cells^[15,37,54, 56, 58,62,65,84]. Drug content of the cells determines the entrapment efficiency of the method used. The process involves deproteinization of packed, loaded cells (0.5 mm) with 2.0 ml acetonitrile and centrifugation at 2500 rpm for 10 min. The clear supernatant is analyzed for the drug content^[18].

The most important parameters for evaluation of resealed erythrocytes are the drug release pattern. Hemoglobin is also invariably released because drug release involves the loss of cell membrane integrity indicating hemolysis.

On the basis of the various in vitro release experiments carried out on these cells, three general drug release patterns are observed:

- The rate of drug release is considerably higher than that of hemoglobin. In other words, drug diffuses readily. Such a pattern is shown by lipophilic drugs, including methotrexate^[17], phenytoin, dexamethasone^[29], primpquin^[22] and vitamin B12^[85]. Cell lysis is not essential for the release of such drugs.
- The rate of drug release is comparable to that of hemoglobin. This indicates that cell lysis is essential for drug release and drug cannot be released by mere diffusion. Polar drugs such as gentamicin ^[29,34], heparin^[29], and enalaprilat, and enzymes such as asparginase^[23,44,54], peptides, including urogasterone and l-lysine-l-phenylalanine ^[86] follow such pattern.
- The rate of drug release lies between the above mentioned two extremes; for example, propranolol^[29], isoniazid^[31,50], metronidazole^[83], and recombinant human erythropoietin^[65].
- The two factors that determine the drug release pattern are size and polarity of the drug molecule ^[29]. The release rate can be modified by cross-linking cell membrane with gluteraldehyde^[38,83], which results in a slower drug release.

can also be achieved by entrapping This prodrug biodegradable such as o-acetyl propranolol, o-pivaloyl propranolol^[30], cortisolphosphate^[32] 21prednisolone-21-sodium cytosine succinate and arabinoside monophosphate ^[84]. The complexation of a drug with macromolecules such as dextran and albumin also retard the release rate^[41].

In vitro storage:

The success of resealed erythrocytes as a drug delivery system depends to a greater extent on their in vitro storage. Preparing drug-loaded erythrocytes on a large scale and maintaining their survival and drug content can be achieved by using suitable storage methods. However, the lack of reliable and practical storage methods has been a limiting factor for the wide-spread clinical use of the carrier erythrocytes ^[30].

The most common storage media include Hank's balanced salt solution ^[17,18,82,86] and acid–citrate–dextrose ^[35] at 4⁰ C. Cells remain viable in terms of their physiologic and carrier characteristics for at least 2 weeks at this temperature ^[86].

The addition of calcium-chelating agents^[30] or the purine nucleosides ^[30,86] improve circulation survival time of cells upon reinjection. Exposure of resealed erythrocytes to membrane stabilizing agents such as dimethyl sulfoxide, dimethyl, 3, 3-di-thio-bispropionamide, gluteraldehyde, toluene-2-4-diisocyanate followed by lyophilization or sintered glass filtration has been reported to enhance their stability upon storage ^[16,22,45,83].

The resultant powder was stable for at least one month without any detectable changes. But the major disadvantage of this method is the presence of appreciable amount of membrane stabilizers in bound form that remarkably reduces circulation survival time. Other reported methods for improving storage stability include encapsulation of a prodrug that undergoes conversion to the parent drug only at body temperature ^[22], high glycerol freezing technique^[58,59], and reversible immobilization in alginate or gelatin gels ^[17, 20,35].

In vivo life span:

The efficacy of resealed erythrocytes is determined mainly by their survival time in circulation upon reinjection. For the purpose of sustained action, a longer life span is required, although for delivery to target-specific RES organs, rapid phagocytosis and hence a shorter life span is desirable. The life span of resealed erythrocytes depends upon its size, shape, and surface electrical charge as well as the extent of hemoglobin and other cell constituents lost during the loading process^[35]. The various methods used to determine in vivo survival time include labeling of cells by 51Cr or fluorescent markers such as fluorescin isothiocyanate or entrapment of 14C sucrose or gentamicin^[32,34,47]. The circulation survival kinetics of resealed erythrocytes show

typical bimodal behavior with a rapid loss of cells during the first 24 h after injection, followed by a slow decline phase with a half life on the order of days or weeks.

The early loss accounts for 15–65% loss of total injected cells^[16,18,35,44,56,58,62,87]. The erythrocytic carriers constructed of red blood cells of mice, cattle, pigs, dogs, sheep, goats, and monkeys exhibit a comparable circulation profile with that of normal unloaded erythrocytes. On the other hand, resealed erythrocytes prepared from red blood cells of rabbits, chickens, and rats exhibit relatively poor circulation profile^[13].

Applications of Resealed erythrocytes:

- Slow drug release
- Drug targeting
- Targeting RES organs
- Targeting the liver ,Enzyme deficiency/replacement therapy
- Treatment of hepatic tumors
- Treatment of parasitic diseases
- Removal of RES iron overload
- Removal of toxic agents
- Targeting organs other than those of RES
- Delivery of antiviral agents
- Enzyme therapy

• Improvement in oxygen delivery to tissues Resealed erythrocytes have several possible applications in various fields of human and veterinary medicine. Such cells could be used as circulating carriers to disseminate a drug within a prolonged period of time in circulation or in target-specific organs, including the liver, spleen, and lymph nodes. A majority of the drug delivery studies using drug-loaded erythrocytes are in the preclinical phase. In a few clinical studies, successful results were obtained^[16,17,59,88,89,90].

Slow drug release:

Erythrocytes have been used as circulating depots for the sustained delivery of antineoplastics ^[23,37,44,53,54,69,91,92,93] antiparasitics^[19,43,55] veterinary antiamoebics ^[18], vitamins ^[85], steroids ^[32,38,42], antibiotics^[31,50,68], and cardiovascular drugs ^[49,82]. The various mechanisms proposed for drug release include:

- Passive diffusion
- Specialized membrane associated carrier transport
- Phagocytosis of resealed cells by macrophages of RES, subsequent accumulation of drug into the macrophage interior, followed by slow release^[16,22].

• Accumulation of erythrocytes in lymph nodes upon subcutaneous administration followed by hemolysis to release the drug ^[57].

Routes of administration include intravenous, which is the most common, followed bv subcutaneous, intraperitoneal, intranasal, and oral ^[16]. Studies regarding the improved efficacy of various drugs given in this form in animal models have been published. Examples include an enhancement in anti-inflammatory effect of corticosteroids in experimentally inflamed rats ^[32,38], increase in half life of isoniazid ^[31,50], levothyroxine [47], cytosine arabinoside [92], and interlukin- $2^{[57]}$, prolongation of plasma half life of erythropoietin from 30 min to 35 h in mice [65], and can increase in mean survival time of mice with experimental hepatoma after injecting methotrexate loaded erythrocytes^[91]. Thalasemic patients, because of multiple blood transfusions, are prone to hemosydrosis, a disease state associated with an excess storage of iron^[94]. This state is treated using SC or IV injections of ironchelating compound desferrioxamine, which causes severe adverse effects in case of multiple injections ^[59]. This agent was loaded on to erythrocytes and the performance of these cells upon reinjection was observed and found to be promising^[58,59]. This therapeutic method is approved in the United States as regular management tool of hemosydrosis since 1984^[20].

Drug targeting:

Ideally, drug delivery should be site-specific and target-oriented to exhibit maximal therapeutic index with minimum adverse effects. Resealed erythrocytes can act as drug carriers and targeting tools as well. Surface-modified erythrocytes are used to target organs of mononuclear phagocytic system/ reticuloendothelial system because the changes in the membrane are recognized by macrophages^[95]. However; resealed erythrocytes also can be used to target organs other than those of reticuloendothelial (RES).

Targeting reticuloendothelial system (RES) organs:

Damaged erythrocytes are rapidly cleared from circulation by phagocytic Kupffer cells in liver and spleen. Resealed erythrocytes, by modifying their membranes, can therefore be used to target the liver and spleen. The various approaches to modify the surface characteristics of erythrocytes include

• Surface modification with antibodies

- Surface modification with gluteraldehyde
- Surface modification with carbohydrates such as sialic acid^[95].
- Surface modification with sulphydryl
- Surface chemical cross-linking e.g. delivery of 125I-labeled carbonic anhydrase loaded in erythrocytes cross-linked with *bis* (sulfosuccinimidyl) suberate and 3,3 -dithio (sulfosuccinimidyl propionate)^[96].

TargetingtheliverEnzymedeficiency/replacement therapy:

Many metabolic disorders related to deficient or missing enzymes can be treated by injecting these enzymes. However, the problems of exogenous enzyme therapy include a shorter circulation half life of enzymes, allergic reactions, and toxic manifestations. These problems can be successfully overcome by administering the enzymes as resealed erythrocytes. The enzymes used include-glucosidase, glucoronidase, galactosidase^[18,34,43]. The disease caused by an accumulation of glucocerebrosides in the liver and spleen can be treated by glucocerebrosidaseloaded erythrocytes^[43].

Treatment of hepatic tumors:

Hepatic tumors are one of the most prevalent types of cancer. Antineoplastic drugs such as methotrexate^[18,35], bleomycin^[21], asparginase^[18,35], and adriamycin^[18,53,93,97] have been successfully delivered by erythrocytes. Agents such as daunorubicin diffuse rapidly from the cells upon loading and hence pose a problem. This problem can be overcome by covalently linking daunorubicin to the erythrocytic membrane using gluteraldehyde or cisaconitic acid^[98] as a spacer. The resealed erythrocytes loaded with carboplatin show localization in liver^[99].

Treatment of parasitic diseases:

The ability of resealed erythrocytes to selectively accumulate within RES organs make them useful tool during the delivery of antiparasitic agents. Parasitic diseases that involve harboring parasites in the RES organs can be successfully controlled by this method. Results were favorable in studies involving animal models for erythrocytes loaded with antimalarial^[19], antileishmanial^[19,34,55], and antiamoebic drugs^[18, 83].

Removal of reticuloendothelial system (RES) iron overload:

Desferrioxamine-loaded erythrocytes have been used to treat excess iron accumulated because of multiple transfusions to thalassemic patients^[18,55].

Targeting this drug to the RES is very beneficial because the aged erythrocytes are destroyed in RES organs, which results in an accumulation of iron in these organs.

Removal of toxic agents:

Cannon et al. reported inhibition of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanase and sodium thiosulfate^[100]. Antagonization of organophosphorus intoxication by resealed ervthrocvtes recombinant containing a phosphodiestrase also has been reported^[100].

Targeting organs other than those of reticuloendothelial system (RES):

Recently, resealed erythrocytes have been used to target organs outside the RES. The

Various approaches include:

- Entrapment of paramagnetic particles along with the drug
- Entrapment of photosensitive material
- The use of ultrasound waves
- Antibody attachment to erythrocyte membrane to get specificity of action

Zimmermann^[73] proposed that the entrapment of small paramagnetic particles into erythrocytes might allow their localization to a particular location under the influence of an external field. The loading of ferrofluids magnetic (colloidal suspension of magnetite) has been reported by^[101]. Entrapment of the antiinflammatory drugs diclofenac sodium and ibuprofen in magnetoresponsive erythrocytes was reported^[102]. Photosensitized erythrocytes have been studied as a phototriggered carrier and delivery system for methotrexate in cancer treatment^[103]. In vitro targeting of erythrocytes to cytotoxic T-cells by coupling of Thy-1.2 monoclonal antibody was reported ^[104]. Colloidal particles and erythrocytes to tissue through ruptures created microvessel by targeted microbubble destruction with ultrasound ^[105]. IV fluorescent erythrocytes were delivered to the interstitium of rat skeletal muscle through microvessel ruptures by insonifying microbubbles in vivo. This technique provides a noninvasive means for delivering resealed erythrocytes across the endothelial carrier to the target tissue.

Other approaches for targeting organs outside the RES include the preparation of carrier erythrocytes fused to thermoresponsive liposomes and their localization using an external thermal source^[35], intraperitoneal injection of resealed erythrocytes for drug targeting to peritoneal

macrophages^[106], and lectin pretreatment of resealed cells loaded with antineoplastic drugs to improve targeting tumor cells^[69].

Delivery of antiviral agents:

Several reports have been cited in the literature about antiviral agents entrapped in resealed erythrocytes for effective delivery and targeting ^[41]. Because most antiviral drugs are nucleotides or nucleoside analogs, their entrapment and exit through the membrane needs careful consideration. Nucleosides are rapidly transported across the membrane whereas nucleotides are not and thus exhibiting prolonged release profiles. The release of nucleotides requires conversion of these moieties to purine or pyrimidine bases. Resealed erythrocytes have been used to deliver deoxycytidine derivatives ^[41], recombinant herpes simplex virus type 1 (HSV-1) glycoprotein B^[104], azidothymidine derivatives^[107]. azathioprene. acyclovir^[42], and fludarabine phosphate^[108].

Enzyme therapy:

Enzymes are widely used in clinical practice as replacement therapies to treat diseases associated with their deficiency (e.g., Gaucher's disease, galactosuria), degradation of toxic compounds secondary to some kind of poisoning (cyanide, organophosphorus), and as drugs ^[49]. The problems involved in the direct injection of enzymes into the body have been cited. One method to overcome these problems is the use of enzyme-loaded erythrocytes ^[15,35]. These cells then release enzymes into circulation upon hemolysis^[35,37] act as a "circulating bioreactors" in which substrates enter into the cell, interact generate with enzymes, and products [18,23,24,35,59,109,110,111] or accumulate enzymes in RES upon hemolysis ^[15,17,43] for future catalysis.

The first report of successful clinical trials of the resealed erythrocytes loaded with enzymes for replacement therapy is that of glucoserebrosidase for the treatment of Gaucher's disease^[90]. The disease is characterized by inborn deficiency of lysosomal -glucoserebrosidase in cells of RES thereby leading to accumulation of glucoserebrosides in macrophages of the RES. The most important application of resealed erythrocytes in enzyme therapy is that of asparginase loading for the treatment of pediatric neoplasms. This enzyme degrades aspargine, an amino acid vital for cells. This treatment prevents remission of pediatric acute lymphocytic leukemia ^[112]. There are reports of improved intensity and duration of action in animal models ^[23,37,44,54] as well as humans^{[16].} To treat lead poisoning, the

concentration of aminolevulinate dehydrogenase (ALA-D) in erythrocytes decreases. This leads to an accumulation of aminolevulinic acid in tissues, blood, and urine. This state leads to acute porphyria and CNS related problems^[113]. An injection of resealed erythrocytes loaded with ALA-D to lead intoxicated animal significantly reduces toxic manifestations [114]. Other enzymes used for loading resealed erythrocytes include urease^[109], galactose-1-phosphate urease^[109], galactose-1-p transferase^[89], uricase^[111], uridyl and acetaldehvde dehydrogenase^[112].

Improvement in oxygen delivery to tissues:

Hemoglobin is the protein responsible for the oxygen-carrying capacity of erythrocytes. Under normal conditions, 95% of hemoglobin is saturated with oxygen in the lungs, whereas under physiologic conditions in peripheral blood stream only 25% of oxygenated hemoglobin becomes deoxygenated. Thus, the major fraction of oxygen bound to hemoglobin is recirculated with venous blood to the lungs. The use of this bound fraction has been suggested for the treatment of oxygen deficiency. 2,3-Diphosphoglycerate (2,3-DPG) is a natural effector of hemoglobin. The binding affinity of hemoglobin for oxygen changes reversibly with changes in intracellular concentration of 2,3-DPG. This compensates for changes in the oxygen pressure outside of the body, as the affinity of 2,3-DPG to oxygen is much higher than that of hemoglobin^[11]. Other organic polyphosphates can serve as allosteric effectors of hemoglobin with binding affinities higher than those of 2, 3-DPG and can compete with 2, 3-DPG for binding to hemoglobin ^[60]. Inositol hexophosphate (IHP) is one of the trongest effectors of this type^[115]. However, because of its ionization at physiologic pH, it cannot enter erythrocytes^[62,115]</sup>. Hence, it is entrapped by the electroporation process. Upon encapsulation, IHP irreversibly binds to hemoglobin, thereby decreasing the oxygen affinity to hemoglobin and subsequent shift of oxygen binding isotherm to the right ^[35]. As a result, the oxygen pressure corresponding to 50% of the total binding capacity of hemoglobin to oxygen (P50 value) increases from 26-27 mm Hg to 50 mm $Hg^{[62]}$. In the presence of IHP encapsulated in erythrocytes, the difference between the oxygen bound fraction of hemoglobin in lungs and tissues increases, thereby increasing the oxygen concentration in tissues. Also, the extent of carbamate formed in the N-terminal amine group of chain of hemoglobin decreases,

which is compensated by an uptake of H and CO2 that leads to increased formation of bicarbonate ion. IV injection of IHP-loaded erythrocytes to piglets led to a decrease in cardiac output with a constant oxygen consumption by animals^[62,116].

This indicates that because of an increased extraction ratio of oxygen by tissues, a given amount of oxygen can be delivered in lower blood flow. In addition, these erythrocytes reduce ejection fraction, left ventricular diastolic volume, and heart rate ^[60]. An isolated perfused-heart model showed reduction in coronary blood flow with oxygen consumption increased bv myocardium upon administration of IHP-loaded ervthrocytes^[117,118,119]. The same results are reported when intact animal models were used [120]

An application of IHP-loaded erythrocytes for improved oxygen supply is beneficial under the following conditions:

- High altitude conditions where the partial pressure of oxygen is low
- Reduction in the number of alveoli, where exchange surface of the lungs is decreased
- Increased resistance to oxygen diffusion in the lungs
- Reduction in oxygen transport capacity
- Mutation or chemical modification, which involves a decrease in oxygen affinity for hemoglobin
- Increased radiosensitivity of radiationsensitive tumors
- Restoration of oxygen-delivery capacity of stored blood
- Ischemia of myocardium, brain, or other tissues^[35,60,62,117].

Microinjection of macromolecules:

Biological functions of macromolecules such as DNA, RNA, and proteins are exploited for various cell biological applications. Hence, various methods are used to entrap these macromolecules into cultured cells (e.g., microinjection) ^[17,121,122,123]. A relatively simple structure and a lack of complex cellular components (e.g., nucleus) in erythrocytes make them good candidates for the entrapment of macromolecules ^[124]. In microinjection, erythrocytes are used as micro syringes for injection to the host cells ^[35].

The microinjection process involves culturing host eukaryotic cells in vitro. The cells are coated with fusogenic agent and then suspended with erythrocytes loaded with the compound of interest in an isotonic medium. Sendai virus (hemagglutinating virus of Japan, HVJ) or its glycoproteins or polyethylene glycol have been used as fusogenic agents^[35,124,125]. The fusogen causes fusion of cosuspended erythrocytes and eukaryotic cells. Thus, the contents of resealed erythrocytes and the compound of interest are transferred to host cell. This procedure has been used to micoroinject DNA fragments^[17], arginase [91,126] proteins, nucleic acids, ferritin, latex particles, bovine and human serum albumin, and kinase^[123] thymidine to enzyme various eukarvotic cells.

Advantages of this method include quantitative injection of materials into cells, simultaneous introduction of several materials into a large number of cells, minimal damage to the cell, avoidance of degradation effects of lysosomal enzymes, and simplicity of the technique. Disadvantages include a need for a larger size of fused cells, thus making them amenable to RES effects clearance. adverse of fusogens, unpredictable effects on cell resulting from the cointroduction of various components. Hence, this method is limited to mainly cell biological applications rather than drug delivery^[124].

Novel approaches:

Erythrosomes:

These are specially engineered vesicular systems that are chemically cross-linked to human erythrocytes' support upon which a lipid bilayer is coated. This process is achieved by modifying a reverse-phase evaporation technique. These vesicles have been proposed as useful encapsulation systems for macromolecular drugs [127,128,129].

Nanoerythrosomes:

These are prepared by extrusion of erythrocyte ghosts to produce small vesicles with an average diameter of 100 nm. Daunorubicin was covalently conjugated to nanoerythrosomes using gluteraldehyde spacer. This complex was more active than free daunorubicin alone, both in vitro and *in vivo*^[130,131].

CONCLUSION:

The use of resealed erythrocytes looks promising for a safe and sure delivery of various drugs for passive and active targeting. However, the concept needs further optimization to become a routine drug delivery system. The same concept also can be extended to the delivery of biopharmaceuticals and much remains to be explored regarding the potential of resealed erythrocytes.

REFERENCE

- Gopal V. S., Doijad R.C., and Deshpande P. B. Erythrocytes as a carrier for prednisolone- in vitro and in vivo evaluation., *Pak J. Pharm. Sci*, 2010 (2) ; 23: 194-200.
- Sawant K.K., Soni H.N. and Murthy R. S. R., Investigation on resealed erythrocytes as carrierfor 5-flurouracil, *Indian J. Pharm. Sci.* 2001(2); 63: 105-109.
- Nicholas B., Retrometabolic approaches to drug targeting membrane and barrier In : Rapaka RS (editor), NIH Publication, 1995: 1-6
- 4. Eicher H.G. and Ramies H., Survial of Gentamicine loaded carrier erythrocytes in healthy human volunteers. *Eur. J. Clin. Invest.* 1986 (1); 16: 39-42.
- 5. Swammerdam, Jan , McGraw Hill AccessScience, 2007. Accessed 27 December 2007.
- 6. Gold Red Blood History Timeline, PBS 2002. Accessed 27 December 2007.
- 7. Sackmann Erich, *Biological Membranes Architecture and Function.*, Handbook of Biological Physics, (ed. R.Lipowsky and E.Sackmann, vol.1, Elsevier, 1995.
- 8. Green R and Widder K.J., Methods in Enzymology (Academic Press, San Diego, 1987), p. 149.
- 9. Ropars C., Chassaigne M., and Nicoulau C., *Advances in the BioSciences*, Pergamon Press, Oxford, 1987), p. 67.
- Telen M.J., "The Mature Erythrocytes," in Winthrob's Clinical Hematology,Lee R. et al., Eds. (Lea & Febiger, Philadelphia, PA, 9th ed., 1993), pp. 101– 133.
- Guyton A.C. and Hall J.E., "Transport of Oxygen and Carbon Dioxide in the Blood and Body Fluids," Textbook ofMedical Physiology (W.B. Saunders, Philadelphia, PA, 1996), pp. 513–523.
- 12. Torotra G.J. and Grabowski S.R., "The Cardiovascular System: The Blood," in Principles of Anatomy and Physiology (Harper Collins College Publishers, New York, NY, 7th ed., 1993), pp. 566–590.
- Vyas S.P. and Khar R.K., Resealed Erythrocytes in Targeted and Controlled Drug Delivery: Novel Carrier Systems (CBS Publishers and Distributors, India, 2002), pp. 87–416.

- Gardos G., "Akkumulation de Kalium Onen Durch Menschiche Blutkorperchen," Acta Physiol. Acad. Sci. Hung.1953; 6: 191–196.
- 15. Iher G.M., Glew R.M., and Schnure F.W., "Enzyme Loading of Erythrocytes," *Proc. Natl. Acad. Sci.* 1973; 70: 2663–2666.
- 16. Jain S. and Jain N.K., "Engineered Erythrocytes as a Drug Delivery ystem," *Indian J. Pharm. Sci.* 1997; 59: 275–281.
- 17. Lewis D.A. and Alpar H.O. Therapeutic Possibilities of DrugsEncapsulatedin Erythrocytes. *Int. J. Pharm.* 1984; 22: 137–146.
- Jaitely V. et al., "Resealed Erythrocytes: Drug Carrier Potentials and Biomedical Applications," *Ind. Drugs 1996;* 33: 589– 594.
- 19. Summers M.P., "Recent Advances in Drug Delivery," *Pharm. J.* 1983; 230: 643–645.
- 20. Lewis D.A., "Red Blood Cells for Drug Delivery," *Pharm.J.* 1984; 233: 384–385.
- 21. Zimmermann U., Jahresbericht der Kernforschungsanlage Julich GmbH (Nuclear Research Center, Julich, 1973), pp. 55–58.
- 22. Talwar N. and Jain N.K., "Erythrocytes as Carriers of Primaquin Preparation: Characterization and Evaluation," J. Controlled Release 1992; 20: 133–142.
- 23. Alpar H.O. and Lewis D.A., "Therapeutic Efficacy of Asparaginase Encapsulated in Intact Erythrocytes," *Biochem. Pharmacol.1985;* 34: 257–261.
- 24. Adriaenssens K. et al. Use of Enzyme-Erythrocytes in In Loaded Vitro Correction Arginase Deficient of Erythrocytes Familiar in Hyperargininemia," Clin. Chem. 1976; 22: 323-326.
- 25. Baker R., "Entry of Ferritin Into Human Red Cells During Hypotonic Hemolysis," *Nature 1967;* 215: 424–425.
- 26. Sprandel U., "Towards Cellular Drug Targeting and Controlled Release of Drugs by Magnetic Fields," *Adv. Biosci.* 1987; 67: 243–250.
- 27. Ihler G.M. and Tsang H.C.W., "Hypotonic Hemolysis Methods For Entrapment of Agents in Resealed Erythrocytes," *Methods Enzymol.* 1987; 149: 221–229.

- Vienken J., Jeltsch E., and Zimmermann U., "Penetration and Entrapment of Large Particles in Erythrocytes by Electrical Breakdown Techniques," *Cytobiologie*. 1978; 17: 182–186.
- 29. Eichler H.C. et al., "In Vitro Drug Release from Human Carrier Erythrocytes," *Adv. Biosci.* 1987 ; 67: 11–15 .
- 30. Alpar H.O. and Irwin W.J., "Some Unique Applications of Erythrocytes as Carrier Systems," *Adv. Biosci 1987*; 67: 1–9.
- Jain S., Jain S.K., and Dixit V.K., "Erythrocytes Based Delivery of Isoniazid: Preparation and In Vitro Characterization," *Indian Drugs 1995*; 32: 471–476.
- 32. Pitt E. et al., "Encapsulation of Drugs in Intact Erythrocytes: An Intravenous Delivery System," *Biochem. Pharmacol.1983;* 22: 3359–3368.
- 33. Kinosita K. and Tsong T.Y., "Survival of Sucrose-Loaded Erythrocytes in the Circulation," *Nature 1978*:272: 258–260.
- 34. Eichler H.G. et al., "In Vivo Clearance of Antibody-Sensitized Human Drug Carrier Erythrocytes," *Clin. Pharmacol. Ther.1986;* 40:300–303.
- Zimmermann U., Cellular Drug-Carrier Systems and Their Possible argeting In Targeted Drugs, EP Goldberg, Ed. (John Wiley & Sons, ew York, 1983), pp. 153– 200.
- 36. Schrier S.L., "Shape Changes and Deformability in Human Erythrocyte Membranes," J. Lab. Clin.Med.1987; 110 (6): 791–797.
- Updike S.J. and Wakamiya R.T., "Infusion of Red Blood Cell-Loaded Asparaginase in Monkey," J. Lab. Clin.Med.1983; 101: 679–691.
- 38. Jenner D.J. et al., "The Effect of the Intravenous Administration of Corticosteroids Encapsulated in Intact Erythrocytes on Adjuvant Arthritis in the Rat," *Brit. J. Pharmacol. 1981;* 73: 212– 213.
- 39. Hamidi M. and Tajerzadeh H., "Carrier Erythrocytes: An Overview," *Drug Delivery2003;* 10: 9–20.
- 40. Deloach J.R., Harris R.L., and Ihler G.M.,
 "An Erythrocyte Encapsulator Dialyzer Used in Preparing Large Quantities of Erythrocyte Ghosts and Encapsulation of

a Pesticide in Erythrocyte Ghosts,"Anal. Biochem. 1980; 102: 220–227.

- 41. Ihler G.M., "Erythrocyte Carriers," *Pharmacol. Ther. 1983;* 20: 151–169.
- 42. Magnani M. et al., *Biotechnol. Appl. Biochem.1998;* 28: 1–6.
- 43. Deloach J. and Ihler G., "A Dialysis Procedure for Loading Erythrocytes with Enzymes and Lipids," *Biochim. Biophys. Acta.1977;* 496 (1): 136–145.
- 44. Updike S.J., Wakarniya R.T., and Lightfoot E.N., "Asparaginase Entrapped in Red Blood Cells: Action and Survival," *Science 1976;* 193: 681–683.
- 45. Bhaskaran S. and Dhir S.S., "Resealed Erythrocytes as Carriers of Salbutamol Sulphate," *Indian J. Pharm. Sci.1995;* 57: 240–242.
- 46. Rechsteiner M.C., "Uptake of Protein by Red Cells," *Exp. Cell Res.* 43, 487–492 (1975).
- 47. Field W.N., Gamble M.D., and Lewis D.A., "A Comparison of Treatment of Thyroidectomized Rats with Free Thyroxin and Thyroxin Encapsulated in Erythrocytes," *Int. J. Pharm.1989;* 51: 175–178.
- 48. Bird J., Best R., and Lewis D.A., "The Encapsulation of Insulin in Erythrocytes," *J. Pharm. Pharmacol.1983;* 35: 246–247.
- 49. Tajerzadeh H. and Hamidi M., "Evaluation of the Hypotonic Preswelling Method for Encapsulation of Enalaprilat in Human Intact Erythrocytes," *Drug Dev. Ind. Pharm.2000;* 26: 1247–1257.
- 50. Jain S., Jain S.K., and Dixit V.K., "Magnetically Guided Rat Erythrocytes Bearing Isoniazid: Preparation, Characterization, and Evaluation," Drug Dev. Ind. Pharm. 1997; 23: 999-1006.
- 51. Klibansky C., PhD, thesis,Hebrew University, Jerusalem, Israel (1959).
- 52. Dale G.L., Villacorte D.G., and Beutler E."High Yield Entrapment of Protein into Erythrocytes," *Biochem.Med.1977;* 18: 220–225.
- 53. Benatti U. et al., "Comparative Tissue Distribution and Metabolism of Free Versus Erythrocyte-Encapsulated Adriamycin in the Mouse," *Adv. Biosci.* (*Series*) 1987; 67:129–136.

- 54. Kravtozoff R. et al., "Erythrocytes as Carriers for L-Asparaginase: Methodological and Mouse In-Vivo Studies," *J. Pharm. Pharmacol.1990;* 42: 473–476.
- 55. Berman J.D., "Antileishmanial Activity of Red Cell Encapsulated Drugs," *Adv. Biosci. (series)1987;* 67: 145–152.
- 56. Deloach J.R. and Doleskey R., "Preparation and Properties of Microcytic Carrier Erythrocytes from Sheep and Goats," *Adv. Biosci. (Series)* 1987; 67: 199–212.
- 57. Deloach J.R. et al., "Subcutaneous Administration of [35-S] r-IL-2 in Mice Carrier Erythrocytes: Alteration of IL-2 Pharmacokinetics," *Adv. Biosci.* (Series) 1987; 67: 183–190.
- 58. Zanella A. et al., "Desferrioxamine Loading of Red Cells for Transfusion," *Adv. Biosci.* (Series) 1987; 67: 17–27.
- 59. Fiorelli G. et al., "Transfusion of Thalasemic Patients with Desferrioxamine Loaded Standard Red Blood Cell Units," *Adv. Biosci.* (Series) 1987; 67: 47–54.
- 60. Villareal M.C. et al., "Modification of Cardiac Parameters in Piglets after Infusion of IHP-Loaded Red Blood Cells," Adv. Biosci. (Series) 1987; 67: 81– 88.
- 61. urel C. et al., "Optimization of Desferrioxamine Loading in Red Blood Cells," *Adv. Biosci.* (Series) 1987; 67: 37–46.
- 62. Teisseire B. et al., "In Vivo Consequences of Rightward Shift of the Hemoglobin Dissociation Curve," *Adv. Biosci.* (Series) 1987; 67: 89–94.
- 63. Jrade M. et al., "Rheological Approach to Human Red Blood Cell Carriers Desferrioxamine Encapsulation," *Adv. Biosci.* (Series) 1987; 67: 29–36.
- 64. Jrade M. et al., "Technical Aspects of Human Red Blood Cell Carriers Methodology. *Adv. Biosci.* (series) 1987; 67: 223–232.
- 65. Garin M.I. et al., "Erythrocytes as Carriers for Recombinant Human Erythropoietin," *Pharm. Res.1996;* 13: 869–874.
- 66. Davson H. and Danielli J.F., *Dannen Conn*.(Hanfer Publishing Co., Germany, 1970), p. 80.

- 67. Billah M.M. et al., "Permeability Characteristics of Erythrocyte Ghosts Prepared Under Isoionic Conditions by a Glycol-Induced Osmotic Lysis," *Biochim Biophys Acta*. 1977; 465 (3): 515–526.
- 68. Deuticke B., Kim M., and Zolinev C., "The Influence of Amphotericin- B on the Permeability of Mammalian Erythrocytes to Nonelectrolytes, anions and Cations," *Biochim. Biophys. Acta.* 1973; 318: 345– 359.
- 69. Kitao T., Hattori K., and Takeshita M. "Agglutination of Leukemic Cells and Daunomycin Entrapped Erythrocytes with Lectin in Vitro and In Vivo," *Experimentia1978;* 341: 94–95.
- 70. Lin W. et al., "Nuclear Magnetic Resonance and Oxygen Affinity Study of Cesium Binding in Human Erythrocytes," *Arch Biochem Biophys.1999*; 369: (1) 78– 88.
- 71. Zimmermann U., Riemann F., and Pilwat G., "Enzyme Loading of Electrically Homogenous Human Red Blood Cell Ghosts Prepared by Dielectric Breakdown," *Biochim. Biophys.* Acta. 1976; 436:460–474.
- 72. Tson g T.Y. and Kinosita K.Use of Voltage Pulses for the Pore Opening and Drug Loading, and the Subsequent Resealing of Red Blood Cells," *Bibl Haematol.1985;* 51:108 – 114.
- 73. Zimmermann U., Pilwat G., and Riemann F., "Preparation of Erythrocyte Ghosts by Dielectric Breakdown of the Cell Membrane," *Biochim Biophys Acta.1975;* 375 (2): 209–219.
- 74. Mitchell D.H, James G.T., and Kruse C.A., "Bioactivity of Electric Field-Pulsed Human
- 75. Mouneimne Y. et al., "Electro-Insertion of Xeno-Glycophorin into the Red Blood Cell Membrane," *Biochem. Biophys. Res. Commun.1989;* 159 (1): 34–40.
- Mangal P. C. and Kaur A.,
 "Electroporation of Red Blood Cell Membrane and its Use as a Drug Carrier System," *Ind. J. Biochem. Biophys.1991*; 28 (3): 219-221.
- 77. Schrier S.L. et al., "Energized Endocytosis in Human Erythrocyte Ghosts," J. Clin. Invest. 1975;(1): 8–22.

- 78. Kinosita K. and Tsong T.Y., "Hemolysis of Human Erythrocytes by a Transient Electric Field," *Proc. Natl. Acad. Sci.1977;* 74:1923–1927.
- 79. DeLoach J., "R. Encapsulation of Exogenous Agents in Erythrocytes and the Circulating Survival of Carrier Erythrocytes," J. Appl. Biochem. 1983; 5 (3):149–157.
- Li L.H. et al., "Electrofusion Between Heterogeneous-Sized Mammalian Cells in a Pellet: Potential Applications in Drug Delivery and Hybridoma Formation," *Biophys J.1996*; 71 (1): 479–486.
- Nicolau C. and Gersonde K., "Incorporation of Inositol Hexaphosphate into Intact Red Blood Cells,I: Fusion of Effector-Containing Lipid Vesicles with Erythrocytes,"*Naturwissenschaften 1979*; 66 (11):563–566.
- 82. Hamidi M. et al., "ACE Inhibition in Rabbits Upon Administration of Enalaprilat-Loaded Intact Erythrocytes," *J.Pharm. Pharmacol.2001;* 53:1281– 1289.
- 83. Talwar N. and Jain N.K., "Erythrocytes as Carriers of Metronidazole: In-Vitro Characterization," *Drug Dev. Ind. Pharm.1992;* 18:1799–1812.
- 84. Deloach J.R., "Comparative Encapsulation of Cytosine Arabinoside Monophosphate in Human and Canine Erythrocytes with In Vitro Drug Efflux," J. Appl. Biochem. 1982;4:533–541.
- 85. Eichler H.G. et al., "Release of Vitamin B12 from Carrier Erythrocytes In Vitro," *Res. Exp.Med.1985;* 185:341–344.
- Lewis D.A. and Desai J., "The Use of Animal Models in the Encapsulation of Drugs in Erythrocytes," *Adv. Biosci.* (Series) 1987; 67:213–222.
- 87. Way J. et al., "Encapsulation of Rhodanese by Mouse Carrier Erythrocytes," Adv. Biosci. (Series) 1987; 67:123–128.
- 88. Green R., Lamon J., and Curran D.,
 "Clinical Trial of Desferrioxamine Entrapped in Red Cell Ghosts," *Lancet1980;* 1: 327–330.
- 89. Harris R.C., "Enzyme Replacement in Red Cells," *N. Eng. J.Med.* 1977;296:942–943.
- 90. Beutler E. et al., "Enzyme Replacement Therapy in Gaucher's Disease. Preliminary Clinical Trial of a New

Enzyme Preparation," *Proc. Natl. Acad. Sci.* 1977;74: 4620–4623.

- 91. Kruse A. et al., "Arginase-Loaded Erythrocyte Carriers: Their Fusion to Host Cells with Viral Fusogenic Proteins and Subcellular Localization of Arginase," Adv. Biosci. (Series)1987; 67:113–122.
- 92. Deloach J.R. and Barton C., "Circulating Carrier Erythrocytes: Slow Release Vehicle for an Antileukemic Drug, Cytosine Arabinoside,"*Am. J. Vet. Res.1982;* 43:2210–2212.
- 93. Al-Achi A. and Boroujerdi M., "Pharmacokinetics and Tissue Uptake of Doxorubicin Associated with Erythrocyte-Membrane: Erythrocyteghosts versus Erythrocyte-Vesicles," *Drug Dev. Ind. Pharm.1990*; 16: 2199–2219.
- 94. McLaren G.D., Muir W.A., and Kellermeyer R.W., "Iron Overload Disorders,"*Crit. Rev. Clin. Lab. Sci.1983*; 19:205–266.
- 95. Alvarez F.J. et al., "Cross-Linking Treatment of Loaded Erythrocytes Increases delivery of Encapsulated Substance to Macrophages," *Biotechnol. Appl. Biochem.1998;* 27: 139–143.
- 96. Franco L. et al., "The Transmembrane Glycoprotein CD38 is a Catalytically Active Transporter Responsible for Generation and Influx of the Second Messenger Cyclic ADP-Ribose Across Membranes," *FASEB J.1998;* 12 (14):1507–1520.
- 97. Zocchi E. et al., "In-Vivo Liver and Lung Targeting of Adriamycin Encapsulated in Glutaraldehyde-Treated Murine Erythrocytes," *Biotechnol. Appl. Biochem.1988;*10:555–562.
- 98. Gaudreault R.C., Bellemare B., and Lacroix J., "Erythrocyte Membrane-Bound Daunorubicin as a Delivery System in Anticancer Treatment," *Anticancer Res. 1989*; 9 (4): 1201-1205.
- 99. Tonetti M. et al., "Construction and Characterization of Adriamycin- Loaded Canine Red Blood Cells as a Potential Slow Delivery System," *Biotechnol Appl Biochem.1990;* 12 (6): 621–629.
- 100. Pei L.et al., "Encapsulation of Phosphotriesterase Within Murine Erythrocytes," *Toxicol. Appl. Pharmacol.1994;* 124 (2):296–301.

- Sprandel U., Hubbard A.R., and R.A. Chalmers R.A., "In Vivo Life Span of Resealed Rabbit Erythrocyte 'Ghosts'," *Res. Exp. Med.* (Berl)1980;177 (1):13–17.
- 102. Jain S.K. and Vyas S.P., "Magnetically Responsive Diclofenac Sodium-Loaded Erythrocytes: Preparation and In Vitro Characterization, J. Microencapsul. 1994; 11 (2):141–151.
- 103. Flynn G., McHale L., and McHale A.P., "Methotrexate-Loaded, Photosensitized Erythrocytes: A Photo-Activatable Carrier/Delivery System for Use in Cancer Therapy," *Cancer Lett.* 1994;82 (2):225–229.
- 104. Chiarantini L. et al., "Modulated Red Blood Cell Survival by Membrane Protein Clustering," *Mol. Cell Biochem.1995;* 144 (1): 53–59.
- 105. Price R.J. et al., "Delivery of Colloidal Particles and Red Blood Cells to Tissue through Microvessel Ruptures Created by Targeted Microbubble Destruction with Ultrasound," *Circulation 1998;98* (13):1264–1267.
- 106. Deloach J.R. and Droleskey R. "Survival of Murine Carrier Erythrocytes Injected Via Peritoneum,"*Comp. Biochem. Physiol.1986;* 83A: 447–450.
- Benatti U. et al., "Enhanced Antitumor Activity of Adriamycin by Encapsulation in Mouse Erythrocytes Targeted to Liver and Lungs,"*Pharmacol. Res.1989;* 21: 27–33.
- 108. Fraternale A, Rossi L., and M.Magnani, "Encapsulation, Metabolism, and Release of 2- Fluoro-Ara-AMP from Human Erythrocytes," *Biochim. Biophys. Acta. 1996*; 1291(2):149–154.
- 109. Zimmermann U., F. Riemann, and G. Pilwat, "Enzyme Loading of Electrically Homogenous Human Red Blood Cell Ghosts Prepared by Dielectric Breakdown," *Biochim. Biophys. Acta.1997;* 436:460–474.
- 110. Magnani M. et al., "Acetaldehyde Dehydrogenase-Loaded Erythrocytes as Bioreactors for Removal of Blood Acetaldehyde, Alcoholism," *Clin. Exp. Res. 1989;* 13: 849–859.
- 111. Ihler G.W. et al., "Enzymatic Degradation of Uricase-Loaded Human Erythrocytes," *J. Clin. Invest.* 1975; 56: 595–602.

- 112. Tan C., "L-Asparaginase in Leukemia,"*Hosp. Pract.1972;* 7: 99–103.
- 113. Ibels L.S. and Pollock C.A., "Lead Intoxication," *Med. Toxicol.1986;* 1:387–410.
- 114. Alcira M. and Bettle D.C., "On the Successful Use of Enzyme Loaded Erythrocyte Ghosts in the Treatment of Lead Intoxication in Animal and Clinical Experience," *Adv. Biosci.* (Series)1987; 67:103–112.
- 115. Arnone A. and Perutz M.F., "Structure of Inositol Hexaphosphate Human Deoxyhaemoglobin Complex," *Nature1974;* 249:34–36.
- 116. Teisseire B. et al., "Physiological Effects of High-P50 Erythrocyte Transfusion on Piglets," J. Appl. Physiol.1985; 58:1810–1817.
- 117. Baron J.F. et al., "Isolated Heart as a Model to Study the Effects of the Decrease in Oxygen Hemoglobin Affinity," Adv. Biosci. (Series) 1987; 67:73-78.
- 118. Woodson R., Hoer C.l, and M. Borchardt, "P50 Shifts and Tissue Oxygen Pressure," Adv. Biosci. (Series) 1987; 67:79–80.
- Stucker O. et al., "Coronary Response to Large Decreases of Hemoglobin- O2 Affinity in Isolated Rat Heart," Am. J. Physiol.1985; 249: 1224–1227.
- 120. Woodson R.D. and Auerbach S., "Effect of Increased Oxygen Affinity and Anemia on Cardiac Output and its Distribution," *J. Appl. Physiol.* 1982;33:176-180.
- Schlegel R.A and M.C. Rechsteiner M.C.,
 "Red Cell-Mediated Microinjection of Macromolecules into Mammalian Cells," Methods Cell Biol.1978; 20:341–354.
- 122. Loyter A., Zakai N., and Kulka R.G., "Ultramicroinjection of Macromolecules or Small Particles into Animal Cells," J. Cell Biol.1975; 66: 292–305.
- 123. Wille W. and Willecke K., "Retention of Purified Proteins in Resealed Human Erythrocyte Ghosts and Transfer by Fusion into Cultured Murine Cells," FEBS Lett.1976; 65:59–62.
- 124. Furusawa M. et al., "Injection of Foreign Substances into Single Cells by Cell Fusion," Nature1974; 249: 449–450.

- 125. Schlegel R.A. and McEvoy L., "Red Cell-Mediated Microinjection," Methods Enzymol.(series)1987;149:293–301.
- 126. Kruse C.K. et al., "Microinjection of Arginase into Enzyme-Deficient Cells with the Isolated Glycoprotein of Sendai Virus as Fusogen," Biochim. Biophys. Acta.1981; 645:339–345.
- 127. Cuppo letti J. et al., "Erythrosomes: Large Proteoliposomes Derived from Cross-Linked Human Erythrocyte Cytoskeletons and Exogenous Lipid," Proc. Natl. Acad. Sci.1981;78(5): 2786–2790.
- 128. Jung C.Y., *Methods in Enzymology* (Academic Press, New York, NY, 1987), pp. 149–217.

- 129. Vyas and Dixit V.K., *Pharmaceutical Biotechnology 1* (CBS Publishers & Distributors, New Delhi, 1999), pp. 655.
- Moorjani M. et al., "Nanoerythrosomes, A New Derivative of Erythrocyte Ghost II: Identification of the Mechanism of Action," *Anticancer Res.1996*; 16 (5A):2831–2836.
- 131. Lejeune A. et al., "Nanoerythrosomes, A New Derivative of Erythrocyte Ghost: III. Is Phagocytosis Involved in the Mechanism of Action?," *Anticancer Res.1997;* 17:176-182.