

Available Online at www.ijpba.info

International Journal of Pharmaceutical & Biological Archives 2011; 2(5):1524-1528

ORIGINAL RESEARCH ARTICLE

Statistical Assurance of Process Validation of Celecoxib Capsules

Sharma Tejal*¹, Mahatma O.P¹, Solanki N.S¹, Singhai S²

¹Bhupal Noble's Girls College of Pharmacy, Udaipur (Rajasthan), India. ²Ranbaxy Laboratories Ltd., Dewas, (M.P.), India

Received 09 Jul 2011; Revised 08 Oct 2011; Accepted 18 Oct 2011

ABSTRACT

A new simple, rapid and reliable Ultraviolet (UV) Spectrophotometry method was developed and validated for the estimation of celecoxib in blend and capsule formulations. The method was based on simple UV estimation in cost effective manner for regular laboratory analysis. The instrument used was Perkin Elmer, UV Spectrophotometer (Lambda 25) and using 0.1 N HCl as solvent system. Samples were analyzed using UV Win Lab 5.2.0 software and matched quartz cells 1 cm and was monitored at 255 nm. Celecoxib was used as an internal standard. Linearity was obtained in the concentration of 2-20µg/ml for celecoxib. The validation parameters tested as per ICH guidelines prove the suitability of this method. Drug excipient interactions were not found. Statistical tools like one way analysis of variance (ANOVA) and Bonferroni's multiple comparison tests were applied on results of blend uniformity and content uniformity, done on process validation batches.

Key words: UV Spectrophotometer, Celecoxib, Process Validation, Capsule Formulations.

INTRODUCTION

Celecoxib, 4-[5-(4- methyl phenyl) -3-(trifluoro -methyl)- 1-H -pyrazol-1-yl]. Celecoxib is a non steroidal anti inflammatory agent (NSAID) that exhibits anti inflammatory, analgesic and antipyretic activities^[1, 2]. It comes under the category of Cyclooxygenase-2 inhibitor, which acts by inhibiting prostaglandin synthesis by inhibiting COX-2 enzyme responsible for prostaglandin synthesis. Celecoxib is given orally to treat inflammation ^[3].

Literature survey revealed spectrophotometric^[4] and chromatographic^[5, 6] methods for analysis of celecoxib. So far, no analytical methods are reported for analysis methods are reported for analysis which is looking to pharmacokinetic characteristics of drug i.e., having t_{max} of 2.9±1.2 µg/ml. The objective of this investigation is to develop, two simple, and economical spectrophotometric^[7] methods for the estimation⁸ of celecoxib using 0.1 N HCl in which drug good solubility. Dissolution performed in 0.1 N HCl, looking at its Pharmacokinetic⁹ and immediate release dosage form and so desired method is appropriate for analysis.

Process validation samples (blend and capsules) are withdrawn at all stages and for all three validation batches for which analysis was performed using developed method.

EXPERIMENTAL

Instrument

For method, Perkin Elmer UV-Vis spectrophotometer (Lambda 25, spectral bandwidth 1 nm) with 10 mm matched quartz cells; Shimadzu, Electronic Weighing Balance (AUX - 220), Oscar Ultrasonic Cleaner, Sonicator (Micro Clean 103) were used.

Procedure

Method of analysis

Standard stock solution of celecoxib was prepared by dissolving 100 mg drug in 100 ml of 0.1 N HCl (i.e., 1000 µg/ml). Aliquot of these solutions were further diluted to obtain concentration of 100 $\mu g/ml$ celecoxib and scanned in the UV range. From the spectra, wavelength 255 nm was selected as reported in (Fig 1). The linearity was observed in the concentration range of 2-20 for celecoxib. The absorptivity µg/ml coefficient of drug at desired wavelengths was determined and results are presented in (Table 1). The spectral data from this scan was used

to determine the concentration of drug in blend and capsule sample solutions. Fig 1: Spectra of Celecoxib API

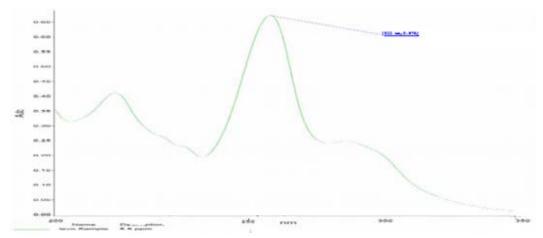


Table 1: Absorptive A(1%,1cm) values of celecoxib at 255 nm

Concentration (µg/ml)	Absorbance	$A(1\%,1cm)$ Mean \pm SD	Molar absorptivity Mean ± SD
6	0.325	532.755±0.04680	20317.837±1.995

^{*} mean of five estimations.

Analysis of Process Validation samples (Blend and capsule formulation)

Contents of twenty capsules were mixed and quantity equivalent to 60 mg of celecoxib was transferred to a series of 100 ml volumetric flasks (5 in each case), extracted with 0.1 N HCl by shaking mechanically (for Content Uniformity). Similarly blend equivalent to 60 mg celecoxib was transferred to a 100 ml calibrated volumetric flask, extracted with 0.1 N HCl by shaking mechanically (for Blend Uniformity). The solution was diluted to mark with same solvent through Whatman filter paper (no. 41). Aliquot portion of this solution was diluted to get concentration of 6 µg/ml of celecoxib. Absorbance of the sample solutions were recorded at 255 nm. The concentration of drug in samples were determined by using calibration curve. The concentration of each drug sample determined by analysis of spectral data of sample solutions with reference standards. The results are reported in (Table 2).

Table 2: Result of assay

Label claim (mg/cap)	% Label claim*	SD	% RSD
200 mg	101.53	0.81	0.40

^{*}mean of three estimations.

Recovery Studies

The recovery studies were carried out at three different levels i.e., 80%, 100% and 120%. It was performed by adding known amount of standard drug solutions of celecoxib to pre-Table 5: Results of other analytical parameters analyzed capsule content solutions. The resulting solutions were then reanalyzed by proposed methods. The results of recovery studies are shown in (**Table 3 & 4**).

Table 3: Analysis of celecoxib API

Amount taken	Amount found*	Amount found (%)±SD	% RSD
6 μg/ml	6.09 µg/ml	101.5 ± 0.685	0.89
* mean of fi	ve estimations.		

Table 4: Results of recovery studies

I UNIC	Tubic ii Results of recovery secures					
S.No	Amount of	% Recovery*±SD	% RSD			
	drug added					
1.	3.2	99.6±0.41	0.43			
2.	4.0	99.1±0.60	0.64			
3.	4.8	98.8 ± 0.88	0.89			

^{*}mean of three estimations at each level.

Statistical tools for the determination of significance of process

Statistical tools such as one way analysis of variance (ANOVA) and Bonferroni's multiple comparison test were used for the determination of significance of process.

RESULTS AND DISCUSSIONS

The proposed methods are simple, sensitive, accurate, precise, reproducible, economic and rapid for simultaneous analysis of celecoxib in capsules. Accuracy of the method was evaluated by carrying out the recovery studies. Low values of % RSD are indicative of high precision of these methods. The repeatability and ruggedness study signifies the reproducibility of the method as shown in (**Table 5**).

Lai	ne 3. Results of other analyt	icai parameters		
	Analytical parameters		Results	%RSD
	1. Precision			
	a)	Intra-day	100.50-100.96	0.40-1.46
	b)	Inter-day	100.08-100.59	0.72-1.39

Repeatability(n=6) 101.53 ± 0.81

0.89

2. Specificity A 10 μ g/ml solution in 0.1 N HCl with 1% w/v sodium lauryl sulfate at 255 nm will show an absorbance of 0.540 \pm 0.0091.

3. Linearity range

 $2-20 \mu g/ml$

4. Ruggedness(n=5)

Analyst I	99.14	0.65
Analyst II	98.96	0.74

Based on the validation study data, it can be concluded that the proposed method is accurate and precise for the analysis of drug. No interference was found from excipients used in capsule formulation and hence the method is suitable for analysis of blend and capsule formulations.

Process validation samples, blend uniformity was found to be good within and between all three validation batches as shown in (**Table 6**). Filling of capsules, sample for content uniformity were collected at three stages (initial, mid, end) for all three validation batches, results for which show that there is uniformity in dosage units within batch and similarity between batches as shown in (**Table 7**).

The results of statistical tools of one way ANOVA used for the determination of significance of blend uniformity and content uniformity have been shown in (**Table 8**, **Table 7**: Content Uniformity* (% Assay for each sample)

9,10,11,12 & 13). The results of Bonferroni's multiple comparison test have been shown in (Table 14 & 15).

Since the $F_{crit} <<<< F$ was found in ANOVA, this shows the high significance of the blend and content uniformity. Looking for statistical analysis of blend and content uniformity it was found that almost all the three batches are highly significant. P value in case of blend uniformity and content uniformity was found to be less than 0.05 which also shows high significance of process. So this shows that the process is validated.

Table 6: Blend Uniformity* (%Assay for each sample)

Batch No	Batch 1	Batch 2	Batch 3
Mean	99.9	97.8	97.9
Minimum	99.3	94.8	95.9
Maximum	100.4	99.8	99.0
% RSD	0.4	1.3	1.0

*Final blend analyzed for 10 locations from rapid mixing granulator.

		Batch 1			Batch 2			Batch 3	
		Stage			Stage			Stage	
	1	2	3	1	2	3	1	2	3
Mean	99.8	100.2	100.1	99.1	100.2	101.3	102.7	103.1	103.2
Minimum	98.9	99.6	99.6	99.5	99.3	99.3	102.1	102.6	102.7
Maximum	100.7	100.6	100.6	100.8	102	102.4	103.8	104.1	103.9
% RSD	0.53	0.36	0.32	1.08	1.09	0.68	0.71	0.52	0.43

* Ten units individual assay was analyzed for each stage of all the batches.

Table 8: ANOVA for blend uniformity

i ubic of filto this	Dictio diffici	iiiity	
ANOVA table	Sum of	df	Mean of
	squares		squares
Between groups	29.162	2	14.581
Within groups	25.05	27	0.927778
Total	5/1/212	29	

Table 9: One way analysis of variance for blend uniformity

umi or micj	
P value	< 0.0001
P value summary	***
Are means significantly different? (P<0.05)	Yes
Number of groups	3
F	15.71605

Table 10: Significance of blend uniformity

${f F}$	$\mathbf{F}_{\mathbf{crit}}$
15.71605	3.354131

Table 11: ANOVA for content uniformity

ANOVA table	Sum of	df	Mean of
	squares		squares
Between groups	192.171	8	24.021
Within groups	39.204	81	0.484
Total	231.375	89	

Table 12: One way analysis of variance for content uniformity

P value	< 0.0001
Are means significantly different (P<0.05)?	Yes
Number of groups	9
F	49.63

Table 13: Significance of content uniformity

Table 5.23 Significance of content uniformity				
F	F *			
49.631	2.0548			

Table 14: Bonferroni's multiple comparison test for blend uniformity

Bonferroni's multiple comparison test	Mean difference	t value	t* at df=9	Significant P<0.05
B1 vs B2	2.1	4.8750864	2.26	Yes
B2 vs B3	-0.1	0.2321469	2.26	No
B1 vs B3	2.0	4.6429394	2.26	Yes

Sable 15: Bonferroni's multiple comparison to Bonferroni's multiple comparison test	Mean difference	t value	Significant(P<0.05)
B1Stage1 vs B1Stage2	-0.37	1.189	No
B1Stage1 vs B1Stage3	-0.24	1.296	No
B1Stage1 vs B2Stage1	0.74	2.378	No
B1Stage1 vs B2Stage2	-0.38	1.221	No
B1Stage1 vs B2Stage3	-1.41	4.531	Yes
B1Stage1 vs B3Stage1	-2.83	9.095	Yes
B1Stage1 vs B3Stage2	-3.25	10.445	Yes
B1Stage1 vs B3Stage3	-3.4	10.928	Yes
B1Stage2 vs B1Stage3	0.13	0.417	No
B1Stage2 VS B2Stage1	1.11	3.567	Yes
B1Stage2 vs B2Stage2	-0.01	0.032	No
B1Stage2 vs B2Stage3	-1.04	3.342	Yes
B1Stage2 vs B3Stage1	-2.46	7.906	Yes
B1Stage2 vs B3Stage2	-2.88	9.256	Yes
B1Stage2 VS B3Stage3	-3.03	9.738	Yes
B1Stage3 vs B2Stage1	0.98	3.149	Yes
B1Stage3 vs B2Stage2	-0.14	0.449	No
B1Stage3 vs B2Stage3	-1.17	3.760	Yes
B1Stage3 vs B3Stage1	-2.59	8.324	Yes
B1Stage3 vs B3Stage2	-3.01	9.674	Yes
B1Stage3 vs B3Stage3	-3.16	10.156	Yes
B2Stage1 vs B2Stage2	-1.12	3.599	Yes
B2Stage1 vs B2Stage3	-2.15	6.910	Yes
B2Stage1 vs B3Stag1	-3.57	11.474	Yes
B2Stage1 vs B3Stage2	-3.99	12.824	Yes
B2Stage1 vs B3Stage3	-4.14	13.306	Yes
B2Stag2 vs B2Stage3	-1.03	3.310	Yes
B2Stage2 vs B3Stage1	-245	7.874	Yes
B2Stage2 vs B3Stage2	-2.87	9.224	Yes
B2Stage2 vs B3Stage3	-3.02	9.706	Yes
B2Stage3 VS B3Stage1	-1.42	4.564	Yes
B2Stage3 vs B3Stage2	-1.84	5.913	Yes
B2Stage3 vs B3Stage3	-1.99	6.396	Yes
B3Stage1 vs B3Stage2	-0.42	1.349	No
B3Stage1 vs B3Stage3	-0.57	1.832	No
B3Stage2 vs B3Stage3	-0.15	0.482	No

ACKNOWLEDGEMENT

The authors are thankful to Ranbaxy Laboratories Ltd. (Dewas, India) for providing the gift sample of drug, Process Validation samples of blend and capsule for this work Management of B.N.Institute, Udaipur for providing the necessary facilities.

REFERENCES

- 1. The Merck Index-An Encyclopedia of chemicals, Drugs and Biological. 13th Ed. USA: Merck and Company; 2001.
- 2. Sean C., Sweetman. Martindale- The complete drug reference. 34th Ed. London London: Pharmaceutical; 2002. p. 302.
- 3. Remington-The Science and Practice of 21st Ed. Pharmacy. Philadelphia: Lippincott and Wilkins; 2005. p. 1541.
- 4. Rao D.S., Srinivasan M.K., LaxmiNarayan C., Reddy G. Liquid chromatography separation of ortho and meta isomers of celecoxib in bulk and formulations

- chiral column. Journal of using Pharmaceutical and Biomedical Analysis 2001; 21-30.
- 5. Dhabu P.M., Akamanchi K.G. A stability indicating high performance chromatography method to determine celecoxib in capsule formulations. Drug Dev Ind Pharm 2002; 28: 815-821.
- 6. Baboota S., Ahmad S. Development and validation of a stability indicating HPLC analysis of celecoxib in method for drug bulk and microemulsion formulations. Actua Chromatographica 2007; 116-129.
- 7. Saha R.N., Sajeev C., Jadhav P.R., Patil S.P., Srinivasan N. Determination of celecoxib in pharmaceutical formulations using UV Spectrophotometry and liquid chromatography. Journal Pharmaceutical and Biomedical Analysis 2002; 28: 2002.
- 8. Roy A., Yohannan D., Lalitha K., Saha R.N. Development of rapid ultraviolet

Sharma Tejal et al. / Statistical Assurance of Process Validation of Celecoxib Capsules

spectrophotometric methods for estimation of celecoxib and acyclovir in formulations. International Journal of Pharmaceutical Education and Research 2008; 42: 215-224.

9. Gika H.G., Diza E., Settas L., Wilson I.D. Determination of two COX-2 inhibitors in serum and synovial fluid of patients with inflammatory arthritis by ultra performance liquid chromatography. J. Pharm Biomed Anal 2009; 49: 579-586.