

International Journal of Pharmaceutical & Biological Archives 2012; 3(4):770-778

ORIGINAL RESEARCH ARTICLE

Antibacterial Activity of Petung Bamboo (*Dendrocalamus Asper*) Leaf Extract Against Pathogenic *Escherichia coli* and Their Chemical Identification

Noryawati Mulyono^{*1}, Bibiana W. Lay¹, Sri Rahayu², Indri Yaprianti¹

¹Faculty of Biotechnology, Yustinus Building 1st floor, Atma Jaya Catholic University, Jl. Jenderal Sudirman No. 51, South Jakarta 12930, Indonesia

²Faculty of Animal Husbandry, Universitas Jenderal Soedirman, Jalan, Dr. HR. Bunyamin, Purwokerto, Indonesia

Received 15 Mar 2012; Revised 14 July 2012; Accepted 24 July 2012

ABSTRACT

Petung bamboo (*Dendrocalamus asper*) is one of the abundant bamboos in Indonesia. Its shoot is nutritious and its wood is used for housing. Meanwhile, the leaves have been used as traditional medicine for remedy diarrhea in animals. Therefore, this research was conducted to compare the antibacterial activity of leaf extracts against diarrheagenic *Escherichia coli*. The extracts were prepared using methanol, ethanol, and the mixture thereof at the ratio 1:1, followed by solvent evaporation, to obtain methanolic, ethanolic, and methanol-ethanolic extracts, respectively.

The antibacterial activity of all extracts was assayed by well, disc diffusions and micro-dilution and their effect were compared to tetracycline as positive control. The well and disc diffusion results were not obvious, but micro-dilution assay showed that ethanolic extract of *D. asper* leaves with yield of $28.47\pm3.76\%$ (w/w) was the most effective to inhibit all tested *E. coli* strains. The chemical identification using pyrolisis-GC/MS showed that fatty acids, together with esters, long chain alcohols, and aldehydes were the major compounds in ethanolic extract of *D. asper* leaves. Further research to improve the effectivity of ethanolic extract as antidiarrheal agent is necessary. Application of the semi pure extract to animal models is also important.

Key words: Petung bamboo, antibacterial activity, microdilution, pyrolisis-GC/MS, fatty acids. **INTRODUCTION**

Bamboo, a group of large woody grasses belonging to the family Poaceae and subfamily Bambusoideae, is one of forest plants which has been used extensively, especially its shoot and wood. The shoot can be processed into various health foods and medicines ^[1,2], while the wood contributes mainly to housing and furniture ^[3]. Using the wood in a big amount yields leaves in a big amount too. Utilization of bamboo leaves was reported by some previous research. The ash of bamboo leaves is potential for stabilizing lateritic soils in highway construction ^[4].

Bioactive compounds are normally accumulated in all parts of plants, but their concentration varies according to the part of plants. The bark and leaves of neem (*Azadirachta indica* L.) and the leaves of Tulsi (*Ocimum sanctum* L.) possessed antibacterial activity against *Bacillus subtilis* and *Staphylococcus aureus, Klebsiella pneumoniae* and *Escherichia coli* ^[5]. Kumaizasa bamboo leaves showed immunopotentiating activity, radical scavenging effects and suppression of tumor growth ^[6]. Ogunjinmi *et al.* ^[7] reported that dysentery, diarrhea, pile, and epilepsy could be treated by *Bambusa vulgaris* leaf extract.

From more than 1,000 species of bamboo in the world, there were about 60 species of bamboo that could be found in Indonesia. In Indonesia, Petung bamboo (*Dendrocalamus asper*), was abundantly available, together with three other species, i.e. apus bamboo (*Gigantochloa apus*), andong bamboo (*G. pseudoarundinacea*), and black bamboo (*G. atroviolaceae*)^[8]. *D. asper* is also one of the most bamboo species growing in Thailand and India ^[9,10].

The shoot of *D. asper* has higher calcium and potassium content than some other species, such as *Bambusa bambos*, *B. tulda*, and *D. strictus*, but their vitamin C and magnesium content are similar ^[9]. *D. asper* wood has 10-18 cm diameter in size and 11-18 cm thickness. It is widely used for housing while the leaves have been used as

*Corresponding Author: Noryawati Mulyono, Email: noryawati@atmajaya.ac.id

traditional medicine for remedy of diarrhea in poultry, calves, piglets, and rabbit.

Beauchamp and Sofos ^[11] reported that foodborne outbreaks caused by diarrheagenic E. coli were primarily associated with beef products. As much as 50 avian pathogenic E. coli (APEC) from broiler chickens with colisepticemia showed their high resistance (80%) against common antibiotics, such as nalidixic acid (100%),lincomycin (100%), erythromycin (97%), oxytetracycline (95%), chlortetracycline (95%), tetracycline (94%), flumequine (94%), tiamulin (91%), doxycycline (88%), difloxacin (83%), (81%), streptomycin neomycin (81%). trimethoprim-sulphamethoxazole (80%)^[12]. As much as 56-100% of E. coli isolates from human fecal were resistant to tetracycline, ampicillin, chloramphenicol, and streptomycin ^[13]. Sharma ^[14] stated that if the antibiotic resistance could not be overcome, there will be no cure for tomorrow.

Using natural antimicrobial agent had some benefits. Extracts of *Caryophyllus aromaticus* and *Syzygyum joabolanum* were tested and the most potent antimicrobial agent was observed. Those extracts had higher activity against antibioticresistant bacteria than against susceptible bacteria. Furthermore, association of antibiotics and plant extracts showed synergistic antibacterial activity against antibiotic-resistant bacteria ^[15]. However, not all natural antimicrobial agents could inhibit *E. coli.* A recent investigation reported that *E. coli* was the most resistant bacteria to the natural antimicrobial agent from edible mushroom (*Dictyophora indusiata*)^[16].

The antibacterial activity of the bamboo leaves has been studied previously. Singh et al. [34] reported that fresh leaves of bamboo were more effective in inhibiting S. aureus than penicillin. Additionally, leaves of bamboo from local area of Sultanpur (Bamboosa *arundinaceae*) were reported to inhibit S. aureus, Ε. coli, Pseudomonas aeruginosa, and Bacillus sp.

Therefore, this research was designed to investigate the activity of *D. asper* leaves against some *E. coli* strains, which cause diarrhea in poultry, piglets, and humans, and to identify the bioactive compounds in the selected extract. If the result is positive, it will not only improve the value of the bamboo leaves, but also decrease the use of synthetic antibiotic in humans and animals, and minimize the economic loss caused by the mortality of the neonatal poultry and piglets due to *E. coli* infections.

MATERIALS AND METHODS

The leaves of D. asper were freshly harvested from Ende (Mataram). The solvents (methanol and ethanol) and Tween-20 were reagent grade (Merck) and NaCl was obtained from Oxoid. The media for antibacterial assay were Nutrient Agar (NA), Nutrient Broth (NB), and Mueller Hinton Agar (MHA), all were obtained from Oxoid. Four strains of E. coli used as tested bacteria were two strains isolated from diarrheal livestock (piglets from BBALITVET Bogor and poultry from UGM Yogyakarta) and E. coli O157:H7 (strain JB4 from well water and AT9 from river water, Microbiology and Fermentation Laboratory, Faculty of Biotechnology Atma Jaya Catholic University, Jakarta). The E. coli serotypes 0157:H7 were chosen because they also cause diarrheal outbreaks ^[18].

Sample preparation,

The fresh bamboo leaves were cut into small pieces, oven dried at 50° for 2 days, milled to become flour. Finally, the flour was sieved using 40 mesh siever to obtain the powdered leaf. The powdered leaf of D. asper was extracted at concentration of 6% (w/v) using methanol, ethanol, and the mixture thereof with a volume ratio 1:1. The mixture was filtered to remove the insoluble matter and the solventless extract was obtained by evaporating the solvent using vacuum rotary evaporator (Buchi R-215) and kept at 4° for further use. The density of solventless extract was measured using calibrated picnometer. All extraction were done triplicate. Each solventless extract was used for antibacterial activity assay and the assay were carried out duplo. The yield was calculated as follows:

yield $\left(\%\frac{w}{w}\right) = \frac{weight of solventless extract}{weight of fresh leaf} x 100\%$

Preparation of *E. coli* for antibacterial activity assay,

E. coli from diarrheal poultry and piglets were grown in NA at 37° for 24 h, then 5 colonies were put into 5 mL NB and reincubated at 37° to reach 0.5 McFarland turbidity ^[19].

Antibacterial activity assay,

The antibacterial activity assay was conducted using three methods, i.e. well and disc diffusions ^[20] and microdilution ^[2]. The first and second methods were conducted using MHA as the media and the tested bacteria were grown in saline solution. The microdilution method was established by mixing 10-40 μ l of extracts with 5 ml of NB, then adding 10 μ l *E. coli*. The concentration of extract could be calculated using the equation:

 $[extract](\%\frac{v}{v}) = \frac{V_{extract} (\mu l)}{V_{extract} (\mu l) + V_{media} (\mu l) + V_{E.coli} (\mu l)} \times 100\%$

The absorbance of samples at 630 nm after being incubated at 37° for 24 h was measured. Solvents for extraction were used as negative controls. The percentage of inhibition by extract was calculated using the equation:

$$\% inhibition = 100 - \left(\frac{A_{E.coli+NB+extract} - A_{NB+extract}}{A_{E.coli+NB+solvent} - A_{NB+solvent}} x 100\right)$$

Tetracycline was used as positive control and its inhibition was determined using microdilution by mixing 5-10 μ l of tetracycline (10 mg/ml) with 5 ml of NB, then adding 10 μ l *E. coli*. The concentration of tetracycline could be calculated using the equation:

 $[Tetracycline]\left(\frac{mg}{ml}\right) = \frac{V_{tetracycline} (\mu l)}{V_{tetracycline} (\mu l) + V_{media} (\mu l) + V_{E.coli} (\mu l)} \times 10mg/ml$

The concentration unit of extract was converted from % (v/v) to mg/ml by multiplying with its density. The dosage-inhibition percentage graphics of extracts and tetracycline were developed to calculate the concentration of either extract or tetracycline to inhibit 99.9% of bacteria. Finally, the effectivity of extract to inhibit *E. coli* growth compared to tetracycline could be calculated-using the equation:

Effectivity of extract (%) =
$$\frac{[tetracycline]_{I=99.9}}{[extract]_{I=99.9}} x100\%$$

Identification of bioactive compounds,

The selected extract with the highest antibacterial activity was identified using pyrolisis-GC/MS (QP 2010 Shimadzu) using the method reported by previous research ^[21].

RESULTS AND DISCUSSIONS

The yield of extracts depended on the polarity of solvents which were used for extraction. The results showed that the yield of methanolic, ethanolic, and methanol-ethanolic extracts were 35.01 ± 8.40 , 28.47 ± 3.76 , and 29.01 ± 1.18 % (w/w), respectively. The density of all solventless extracts was 0.87, 0.81, and 0.86 g/ml, respectively.

Antibacterial activity assay by well diffusion and disc diffusion methods resulted in ambiguous data. The clear zone around the well or the disc could not be seen obviously. There were two possibilities that cause these results. Firstly, the extract did not have antibacterial activity against the tested *E. coli*. Secondly, while diffusing in the media, the extract caused the turbid zone due to formation of colloid products. Therefore, we conducted the third method to validate the results.

The result of microdilution assay showed that both ethanolic and methanol-ethanolic extracts of D. *asper* leaves could inhibit the growth of all tested *E. coli*, but methanolic extract did not (**Table 1**). It

seemed that the ethanolic extract of D. asper leaves was more effective to inhibit E. coli, especially E. coli O157:H7 from well water (JB4). The data of methanolic extract were inaccurate because the absorbance were too large (more than 1.5), eventhough their concentration was the same as other extracts. According to Altman^[22], the spectrophotometer will not give accurate results if the absorbance is either too high (>1.5) or too low (<0.02). This research is also in accordance with [23] al. which reported that Scorzoni et microdilution was more sensitive than agar diffusion. Broth microdilution is the most widely used method in clinical laboratories ^[19]. The data in Table 1 were used to develop a linear regresion in order to determine the required dosage of the antimicrobial agent to inhibit the growth of E. coli by 99.9% so that the effectivity of extract to inhibit bacterial growth could be compared to that of tetracycline^[24].

(Table 2) shows the inhibition growth of all tested E. *coli* when administered by tetracycline. The results showed that the percentage inhibition of E. *coli* depended on the strain of E. *coli* but not on the solvent used to dissolve the antibiotic. It seemed that E. *coli* isolated from diarrheal piglets was the most sensitive to tetracycline.

(**Table 3**) showed that ethanolic extract was more effective than methanol-ethanolic extract to inhibit all tested pathogenic *E. coli*. Among all strains, *E. coli* O157:H7 from well water seemed the most sensitive to the extract.

There were 20 organic compounds in methanolethanolic extract of D. asper leaves which had been identified using py-GC/MS, and 15 of them could be identified with similarity index $\geq 90\%$. They could be grouped as fatty acids and the esters (54.72%), long chain alcohols (30.11%), derivatives of phenol (2.52%),aliphatic hydrocarbon (1.04%), and cyclic hydrocarbon (0.83%). Py-GC/MS predicted that there were 32 organic compounds in ethanolic extract of D. asper leaves, and 21 of them could be identified with similarity index $\geq 90\%$. They could be grouped as fatty acids and the esters (74.21%), nitrogenous compounds (7.09%),aliphatic hydrocarbons (3.21%),cyclic hydrocarbons (2.62%), long chain alcohols (2.50%), derivatives of phenol (1.38%), long chain aldehydes (0.89%), and long chain ketone (0.36%) (Table 4). Singh et al. [17] also reported that ethanol was the best solvent to extract bamboo leaves to obtain antibacterial agent, including against E. coli, compared to several tested solvents, i.e. petroleum

ether, benzene, chloroform, ethyl acetate, and water.

We hypotesized that fatty acids in ethanolic and methanol-ethanolic extracts play an important role in inhibiting the growth of E. coli. According to Desbois and Smith^[25], free fatty acids possessed broad spectrum antibacterial properties, but their activity is influenced by their structure and shape. Esters also had antibacterial properties because they would be hydrolyzed by the lipase secreted from the sebaceous glands. Furthermore, it was reported that unsaturated fatty acids tend to have greater potency than saturated fatty acids with the same length carbon chain. This report is in accordance with our result. The ethanolic extract contained more fatty acids and esters than the methanol-ethanolic extract of D. asper leaves (74.21% vs 54.72%). In addition, the ethanolic extract also contained more unsaturated fatty acids and esters than the methanol-ethanolic extract (35.38% vs 28.94%).

Fatty acids from other plant extracts have also been reported about their antibacterial and antifungal activities ^[26]. The mixture of 14 fatty acids (mostly palmitic, lauric, and linolenic acids) in blind-your-eye mangrove (*Excoecaria agallocha*) leaf extract was 0.03-0.20% effective as ciprofloxacin. It seemed that *E. coli* was more sensitive to fatty acids than *K. pneumoniae* and *P. aeruginosa*.

Khaliq-Uz-Zaman *et al.* [27] reported that methanolic extract of Chara coralline var wallichii (A. Br.) R.D. Wood (Charophyta) could inhibit E. coli, Corynebacterium diphtheriae, P. Salmonella aeruginosa, typhi, S. aureus, Streptococcus pyrogenes, Vibrio cholerae, Allescheria boydii, Aspergillus niger, Curvularia lunata, Microsporum canis, Nigrospora oryzae, Pleurotus austreatus, Stachyobotrys atra, and Trichophyton mentagrophytes, but were not active to C. hoffmannii, K. pneumoniae, Shigella flexneri, Candida albicans, and Dreschslera rostrata. That extract contained 36.45% saturated, 35.17% dienoic, 15.06% trienoic, and 13.24% monoenoic FAMEs, such as lauric, heptadecanoic, palmitic, stearic, linoleic, and linolenic ones.

Abitogun and Badejo ^[28] reported that the percentage of fatty acids in ginger oil were linoleic (23.91), oleic (22.09), palmitic (20.96), lauric (8.93), linolenic (5.64), capric (4.14), myristic (3.75), stearic (3.50), lignoceric (2.28), caprylic (1.30), and arachidonic (0.19). This extract could inhibit *E. coli, S. aureus, K. pneumoniae*, and *P. aeruginosa*.

Annamalai et al. [29] reported that the inhibition activity of caprylic acid toward E. coli and total anaerobic bacteria in bovine rumen fluid depended on pH. Its bactericidal activity toward those bacteria was more efficient and faster at pH 5.6 than at pH 6.8. In addition, Nair *et al.* ^[30] reported that caprylic acid and monocaprylin could inactivate common mastitis pathogens, including S. agalactiae, S. dysgalactiae, S. uberis, S. aureus, and E. coli and potential as alternatives or adjuncts to antibiotics as intra-mammary infusion to treat bovine mastitis. Caprylic compound, such as caprylic glycol has been known about its antimicrobial activity against S. aureus, E. coli, P. aeruginosa, and C. albicans^[31]. Pubmed ^[32] reported that lauric acid itself had no antibacterial activity, but its combination with gentamicin or imipenem was synergistic against methicillin-resistant S. aureus (MRSA). Lauric acid, together with its monoglyceride, capric acid, myristic acid, and linoleic acid, were reported as the most potent inhibitors across MRSA, but has not been tested against E. coli. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes had also been proved [33]

However, thorough investigation about the inhibiting activity of other fatty acids and esters against diarrheagenic *E. coli* shoud be conducted. Marounek *et al.* ^[34] reported that among C_2 - C_{18} fatty acids, only caprylic acid and capric acid had significant antimicrobial activity toward *E. coli*. The same research team also reported that the sensitivity of the same species of bacteria varied according to the strain. Only medium-chain fatty acids (C_8 to C_{14}), oleic acid, and linoleic acid inhibited *C. perfringens* ^[35].

In addition, the methanol-ethanolic extract also contained alcohols and aldehydes, namely 9,12,15-octadecatrienal, myristaldehyde, 4,8dimethyl-1-nonanol, hexahydrofarnesol, phytol, and 9,12,15-octadecatrien-1-ol. Those compounds could be oxidized to become its acid form which possessed antibacterial activity.

Stigmast-5-en-3-ol, oleat might have bacteriostatic activity. It could be hydrolyzed as oleic acid and stigmasterol. While the first was fatty acid, the latter was sterol which was active toward several bacteria and fungi, such as *E. coli, S. typhi*, and *S. pyogenes, S. aureus, V. cholerae, A. boydii, C. lunata, M. canis, N. oryzae, P. austreatus, S. atra,* and *T. mentagrophytes,* but no active against *C. diphtheriae, C. hoffmannii, K. pneumoniae, P.*

IJPBA, July - Aug, 2012, Vol. 3, Issue, 4

aeruginosa, S. flexneri. A. niger, C. albicans, and D. rostrata^[27].

Pubmed ^[36] reported that guaiacol could inactivate the spores and vegetative forms of harmful microorganisms and it was not permanently absorbed in the blood but could be eliminated rapidly from the tested rats. The ethanolic extract contained phenol which antimicrobial activity was similar to guaiacol ^[37].

Long chain alkane might possess antibacterial activity, but not toward E. coli. Yayli et al. [38] reported that essential oil of air-dried Minuartia meyeri (Boiss.) Bornm possessed moderate antibacterial activity against Yersinia pseudotuberculosis, Enterococcus faecalis, and S. aureus, but the activity of E. coli, K. pneumoniae, Serratia marcescens, B. subtilis, C. albicans, and C. tropicalis was not significantly inhibited by the presence of the extract. Some of chemical constituents in the extract were also present in our ethanolic extract. such as n-tetradecane, phytol, n-hexadecane, pentadecane. and ndocosane. In addition, the methanol-ethanolic extract also contained a well known antioxidant, namely butylated hydroxyanisole.

Purification might be a good strategy to increase the effectivity of extracts to inhibit the growth of pathogenic *E. coli*. Some important physical characteristics of bioactive compounds in both extracts had been predicted using ACDLABS 12.0 (**Table 5**) so that the appropriate purification strategy could be considered.

The physical properties of bioactive compounds (fatty acids, alcohols, aldehydes, and esters) and ethanolic extract of D. asper leaves were quite different from those of its impurities; therefore purification based on those physical properties might be feasible. Theoretically, the yield of purified extract based on their refractive index seemed to be the highest but the lowest impurities could be achieved by purification based on the density. Regarding the yield of crude ethanolic extract, the profile of purified ethanolic extract was depicted in (Figure 1). It can be seen that the purification should be based on the surface tension or density to obtain the least impurity among the four purification principle. The possible impurities in each purified extract was shown in (Table 6).

Substituting conventional antimicrobial agents to fatty acids may be realistic and beneficial ^[25]. Fatty acids are also active against methanogens in the guts of ruminants, so the emissions of methane

could be reduced. Pigletss treated with lipids and a lipolytic enzyme showed improved weight gain and feed conversion. In summary, among the three tested solvents, ethanol is the best to extract the antidiarrheal agent from *D. asper* leaves and the bioactive compounds in the extract was fatty acids and their relatives, such as alcohols, aldehydes, and esters. This promising result should be continued with further research to improve the effectivity of ethanolic extract. Application of the selected extract to animal models is also important.

 Table 1: Inhibition of the growth (%) of E. coli at several concentration of extract

Extract		Me ¹	Et ²	Mix ³	Me ¹	Et ²	Mix ³		
μl	(% v/v)	<i>E. coli</i> from diarrheal				E. coli from			
		poultry			diarrheal piglets				
1	0.199	8.6	43.0	46.8	30.7	57.0	10.8		
0									
2	0.398	0	55.6	56.5	25.1	80.9	72.8		
0									
4	0.792	0	60.6	54.0	15.1	93.9	86.5		
0									
		E. coli O157:H7 from			E. coli O157:H7 from				
		water (J	B4)		water (AT9)				
1	0.199	0	34.1	41.5	0	17.3	15.3		
0									
2	0.398	0	89.0	36.1	0	53.7	44.8		
0									
4	0.792	0	100	41.8	0	85.0	82.0		
0									
¹ Methanolic extract ² Ethanolic extract ³ Methanol-ethanolic									

¹Methanolic extract, ²Ethanolic extract, ³Methanol-ethanolic extract

 Table 2: Percentage inhibition of E. coli in the presence of tetracycline

Tetracycli		Me ¹	Et ²	Mix ³	Me ¹	Et ²	Mix ³
μl	mg/ml	<i>E. coli</i> fro	E	. <i>coli</i> fr	om		
		poultry	diar	rheal p	iglets		
5	0.0100	44.4	39.3	37.1	8.1	36.4	6.3
8	0.0159	48.8	44.2	42.2	44.9	61.9	43.8
1	0.0199	50.7	46.2	44.3	62.0	73.7	61.2
0							
		E. coli O	157:H7	from	E. col	i O157:	H7
		water (JI	34)	from	water (A	AT9)	
5	0.0100	13.4	4 19.3	15.07	32.9	45.7	42.4
8	0.0159	15.4	4 21.2	17.0	49.7	59.3	56.8
1	0.0199	18.3	52.5	61.5	59.2		

¹Me = tetracycline dissolved in methanol, Et^2 = tetracycline dissolved in ethanol, Mix^3 = tetracycline dissolved in methanolethanol (1:1)

 Table 3: Effectivity of extracts in inhibiting *E. coli* compared to tetracycline (%)

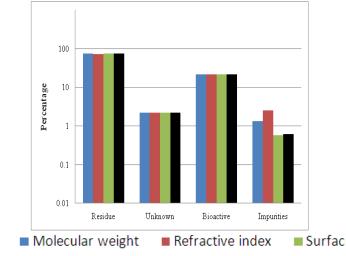
Sources of	of <i>E. coli</i>	Et ¹	Mix ²			
Animals	Diarrheal poultry	0.54	0.20			
	Diarrheal piglets	0.39	0.37			
Water	Well (JB4)	3.30	0.09			
	River (AT9)	0.58	0.52			
Average		1.20	0.30			

¹*Ethanolic extract*, ²*Methanol-ethanolic extract*

Noryawati Mulyono <i>et al</i> .	/ Antidiarrheal agent from	petung bamboo leaf
----------------------------------	----------------------------	--------------------

Groups	pounds in methanol-ethanolic and ethan Chemical constituents		· · · · · · · · · · · · · · · · · · ·	Form		Mix ¹		Et	
Crowbo	Cheffical constituents			- 01111		%	SI	%	SI
Phenol derivatives	Guaiacol			C ₇ H ₈	D_2	0.43	94	-	-
	Maltol			C_6H_6		0.68	92	0.33	91
	Phenol			C_6H_6		-	-	0.29	82
	Phenol, 4-ethenyl-2-methoxy-			C_9H_{10}		0.41	94	-	-
	2,6-Dimethoxyphenol		C_8H_{10}		0.77	95	0.76	85	
	Butylated hydroxyanisole			$C_{11}H_1$		0.23	73	-	-
Cyclic	1-Limonene			$C_{10}H_1$		0.36	95	1.48	96
hydrocarbons	Corylon			C_6H_8		-	-	0.85	96
nyurocaroons	p-Menth-1-ene			$C_{10}H_1$		-	-	0.85	87
	(-)-m-menth-1(7)-ene			$C_{10}H_1$		0.47	- 79	0.27	-
Aliphatic	n-Pentadecane			$C_{10}H_1$ $C_{15}H_3$		0.47	96	0.44	- 96
hydrocarbons	n-Hexadecane			$C_{16}H_3$	2	-	-	0.23	91
nyurocaroons	n-Tetradecane			$C_{16}H_{3}$ $C_{14}H_{3}$		-	-	0.23	90-9
	n-Docosane			$C_{14}H_{3}$ $C_{22}H_{4}$		-	-	0.60	90-9
	Squalene			$C_{22}H_4$ $C_{30}H_5$		-	-	0.34	97
	2-Hexadecene, 3,7,11,15-tetramethyl-, []	$\mathbf{D} \left[\mathbf{D} * \mathbf{D} * (\mathbf{E}) \right]$				0.84	- 93	1.03	93
Fatty acid and the	Lauric acid	K-[K*,K*-(E)]]-		$C_{20}H_4$			93 87	0.45	92
•				$C_{12}H_2$		0.38		0.45	93
ester	11,14,17-Eicosatrienoic acid, methyl est	er		$C_{21}H_3$		0.32	- 88	-	-
	Menthol acetate	a and and the		$C_{12}H_2$		-		0.60	79
	Acetic acid 3,7,11,15-tetramethyl-hexad	lecyl ester		$C_{22}H_4$		0.16	94	-	-
	Methyl palmitate			C ₁₇ H ₃		6.18	95	2.82	97
		Palmitic acid			$_{2}O_{2}$	11.24	94	7.69	96
	Methyl heptadecanoate			C ₁₈ H ₃		0.63	96	-	-
	Allyl stearate			C ₂₁ H ₄		0.35	81	0.44	86
	Methyl linoleate				₄ O ₂	-	-	4.37	93
	Methyl stearate				₈ O ₂	-	-	1.95	89
	Stigmast-5-en-3-ol, oleat				$_{2}O_{2}$	-	-	0.99	85
	Methyl linolenate				$_2O_2$	28.62	95	29.44	92-9
	Ethyl linoleate				₆ O ₂	-	-	0.58	90
	Dioctyl adipate			$C_{22}H_4$	$_2O_4$	6.84	90	24.88	84
Long chain	9,12,15-Octadecatrienal			$C_{18}H_3$	O_0	-	-	0.52	88
aldehyde	Myristaldehyde			$C_{14}H_2$	₈ O	-	-	0.37	82
Long chain ketone	2-heptadecanone			C ₁₇ H ₃		-	-	0.36	95
Long chain alcohol	9,12,15-Octadecatrien-1-ol			C ₁₈ H ₃	20	22.26	90	-	-
8	Phytol			$C_{20}H_4$		7.85	94	1.77	93
	4,8-Dimethyl-1-nonanol			$C_{11}H_2$		-	_	0.45	90
	Hexahydrofarnesol	C ₁₁ H ₂₄ O C ₁₅ H ₃₂ O				-	-	0.28	93
Nitrogenous	Ammonium carbamate			CH ₃ N		-	-	4.87	100
compounds	Cyclopentolate			C ₁₇ H ₂		-	-	1.41	88
· · · · · · · · · · · · · · · · · · ·	Trimethylamine			C_3H_9		-	-	0.81	98
I – similarity index (0	%), ¹ Methanol-ethanolic extract, ² Ethanoli	c extract		C31191	•		I	0.01	70
Table 5: Some physical r	properties of bioactive compounds in methan	ol-ethanolic and	ethanolic	extracts	predict	ed using	ACDI	LABS 12.0.	
Bioactive compound		MW	RI			(dyne/cn		ρ (g/ml)
							,		
Lauric acid (C12H24C								0.905 ± 0.000	
	(\mathbf{D}_2)	200.32	1.447 ±	0.02	33	$.2 \pm 3.0$		0.905 ± 0 0.892 ± 0	
Palmitic acid (C16H32	D ₂) 2O ₂)	200.32 256.42	1.447 ± 1.453 ±	0.02	33 33	$.2 \pm 3.0$ $.3 \pm 3.0$		0.892 ± 0).06
Palmitic acid (C ₁₆ H ₃₂ Methyl palmitate (C ₁₇	0 ₂) 2 ₂ O ₂) 7H ₃₄ O ₂)	200.32 256.42 270.45	1.447 ± 1.453 ± 1.441 ±	0.02 0.02 0.02	33 33 30	$.2 \pm 3.0$ $.3 \pm 3.0$ $.2 \pm 3.0$		0.892 ± 0.000 0.865 ± 0.000).06).06
Palmitic acid $(C_{16}H_{32})$ Methyl palmitate (C_{12}) Methyl linolenate (C_{13})	0 ₂) 2 ₂ O ₂) 7H ₃₄ O ₂)	200.32 256.42 270.45 292.46	1.447 ± 1.453 ± 1.441 ± 1.475 ±	= 0.02 = 0.02 = 0.02 = 0.02 = 0.02	33 33 30 31	$.2 \pm 3.0$ $.3 \pm 3.0$ $.2 \pm 3.0$ $.6 \pm 3.0$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\end{array}$	0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{11}$ Methyl linolenate $(C_{11}$ Phenol (C_6H_6O)	D ₂) ₂ O ₂) ₇ H ₃₄ O ₂) ₁₉ H ₃₂ O ₂)	200.32 256.42 270.45 292.46 94.11	$\begin{array}{r} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \end{array}$	= 0.02 = 0.02 = 0.02 = 0.02 = 0.02	33 33 30 31 40	2 ± 3.0 3 ± 3.0 2 ± 3.0 6 ± 3.0 9 ± 3.0		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\end{array}$	0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{11}$ Methyl linolenate $(C_1$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H)$	D_{2} $D_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O$	200.32 256.42 270.45 292.46 94.11 308.50	$\begin{array}{r} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.465 \pm \end{array}$	= 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02	33 33 30 31 40 31	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\end{array}$	0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{12}$ Methyl linolenate $(C_1$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ H_{34} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{18} \\ H_{30} \\ O \\ D_{18} \\ H_{30} \\ O \\ D_{18} \\ D_{18}$	200.32 256.42 270.45 292.46 94.11 308.50 262.43	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ \end{array}$	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	33 33 30 31 40 31 31	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\end{array}$	0.06 0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{12}$ Methyl linolenate $(C_1$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H)$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ H_{34} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ $	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.476 \pm \\ 1.435 \pm \end{array}$	= 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02 = 0.02	33 33 30 31 40 31 31 31 29	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.826 \pm 0 \end{array}$	0.06 0.06 0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_1$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ H_{34} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ D_{2} \\ D_{36} \\ $	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.485 \pm \end{array}$	= 0.02 = 0.02	33 33 30 31 40 31 31 31 29 32	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.865 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.826 \pm 0\\ 0.869 \pm 0\\ \end{array}$	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_1$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{1} \\ T_{134} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{10} \\ D_{1$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.534 \pm \end{array}$	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	33 33 30 31 40 31 31 31 29 32 38	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.826 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\end{array}$	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{17}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrien	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{1} \\ T_{134} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{10} \\ D_{1$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.534 \pm \\ 1.534 \pm \\ 1.475 \pm \end{array}$	0.02 0.02	33 33 30 31 40 31 31 31 31 29 32 38 38 31	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .8 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.826 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\\ 0.891 \pm 0\end{array}$	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Phenol (C_6H_6O) Ethyl linoleate ($C_{20}H$ 9,12,15-octadecatrien Myristaldehyde ($C_{14}H$ 9,12,15-octadecatrien Guaiacol ($C_7H_8O_2$) 11,14,17-Eicosatrien Menthol acetate ($C_{12}H$ Acetic acid 3,	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{1} \\ T_{134} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{10} \\ D_{1$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.534 \pm \end{array}$	0.02 0.02	33 33 30 31 40 31 31 31 31 32 38 32 38 31 28	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.826 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\end{array}$	0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{1}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrien Menthol acetate $(C_{12}H_{42}O_{2})$ Acetic acid 3, $(C_{22}H_{44}O_2)$	$\begin{array}{l} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{1} \\ T_{134} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{10} \\ D_{10$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.534 \pm \\ 1.534 \pm \\ 1.475 \pm \\ 1.441 \pm \\ 1.445 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 38 31 28 29	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .8 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.917 \pm 0 \\ 0.858 \pm 0 \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{17}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrien Menthol acetate $(C_{12}H$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa	$\begin{array}{l} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{10} $	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.534 \pm \\ 1.534 \pm \\ 1.475 \pm \\ 1.441 \pm \\ 1.445 \pm \\ 1.445 \pm \\ 1.442 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 31 29 32 32 38 31 28 38 31 28 30 30	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .6 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .8 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.865 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\\ 0.891 \pm 0\\ 0.891 \pm 0\\ 0.858 \pm 0\\ 0.858 \pm 0\\ 0.864 \pm 0\\ \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{17}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrienc Menthol acetate $(C_{12}H_{40})$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa Allyl stearate $(C_{21}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ D_{3$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.534 \pm \\ 1.475 \pm \\ 1.441 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.452 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 31 32 32 32 32 32 32 32 32 32 30 30 30 30	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .9 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.863 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.917 \pm 0 \\ 0.858 \pm 0 \\ 0.864 \pm 0 \\ 0.868 \pm 0 \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl Iinolenate $(C_{1}$ Phenol (C_6H_6O) Ethyl Iinoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrience Menthol acetate $(C_{12}H_{40})$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa Allyl stearate $(C_{21}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{3} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{4} \\ D_{4} \\ D_{2} \\ D_{4} \\ D_{4} \\ D_{2} \\ D_{4} \\$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.453 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.475 \pm \\ 1.441 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.452 \pm \\ 1.464 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 31 31 28 29 29 30 30 30 30 31	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .4 \pm 3.0 \\ .9 \pm 3.0 \\ .2 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0\\ 0.865 \pm 0\\ 0.865 \pm 0\\ 1.071 \pm 0\\ 0.882 \pm 0\\ 0.863 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\\ 0.891 \pm 0\\ 0.891 \pm 0\\ 0.858 \pm 0\\ 0.858 \pm 0\\ 0.864 \pm 0\\ \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{17}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrience Menthol acetate $(C_{12}H_{40})$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa: Allyl stearate $(C_{19}H_{40})$ Methyl linoleate $(C_{19}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{4} \\ D_{36} \\ O_{2} \\ D_{10} \\ D_$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47 298.50	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.445 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.464 \pm \\ 1.444 \pm \\ 1.444 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 31 31 28 29 29 30 30 30 30 30 31 30	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .1 \pm 3.0 \\ .4 \pm 3.0 \\ .9 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .5 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.863 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.858 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.863 \pm 0 \\ 0.864 \pm 0 \\ 0.863 \pm 0 \\ 0.864 \pm 0 \\$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{17}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrience Menthol acetate $(C_{12}H_{40})$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa: Allyl stearate $(C_{19}H_{40})$ Methyl linoleate $(C_{19}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{19} \\ H_{32} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{4} \\ D_{36} \\ O_{2} \\ D_{10} \\ D_$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47 298.50 679.15	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.445 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.464 \pm \\ 1.464 \pm \\ 1.509 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 31 31 28 29 29 30 30 30 30 30 31 30	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .4 \pm 3.0 \\ .9 \pm 3.0 \\ .2 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.826 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.917 \pm 0 \\ 0.858 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.884 \pm 0 \\ \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{1}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrienc Menthol acetate $(C_{12}$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa Allyl stearate $(C_{21}H_{40})$ Methyl linoleate $(C_{19}H_{40})$ Methyl stearate $(C_{19}H_{40})$ Methyl stearate $(C_{19}H_{40})$ Methyl stearate $(C_{19}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{7} \\ H_{34} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{14} \\ D_{18} \\ D_{10} \\ D_{18} \\ D_{10} \\ D_$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47 298.50	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.445 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.464 \pm \\ 1.444 \pm \\ 1.444 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 31 31 28 29 29 30 30 30 30 30 30 30 31 30 38	$\begin{array}{c} .2 \pm 3.0 \\ .3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .1 \pm 3.0 \\ .4 \pm 3.0 \\ .9 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .5 \pm 3.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.863 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.858 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.863 \pm 0 \\ 0.864 \pm 0 \\ 0.863 \pm 0 \\ 0.864 \pm 0 \\$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl Iinolenate $(C_{1}$ Phenol (C_6H_6O) Ethyl Iinoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrience Menthol acetate $(C_{12}H_{40})$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa Allyl stearate $(C_{21}H_{40})$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{7} \\ H_{34} \\ O_{2} \\ D_{36} \\ O_{2} \\ D_{14} \\ D_{18} \\ D_{10} \\ D_{11} \\ D_{10} \\ D_{11} \\ D_{10} \\ D_{11} \\ D_{$	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47 298.50 679.15	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.445 \pm \\ 1.445 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.464 \pm \\ 1.464 \pm \\ 1.509 \pm \\ \end{array}$	0.02 0.02	33 33 30 31 40 31 31 29 32 38 31 31 29 32 38 31 30 30 30 30 30 31 30 38 33	$\begin{array}{c} 2 \pm 3.0 \\ 3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .1 \pm 3.0 \\ .2 \pm 3.0 \\ .5 \pm 3.0 \\ .0 \pm 5.0 \end{array}$		$\begin{array}{c} 0.892 \pm 0 \\ 0.892 \pm 0 \\ 0.865 \pm 0 \\ 0.895 \pm 0 \\ 1.071 \pm 0 \\ 0.882 \pm 0 \\ 0.863 \pm 0 \\ 0.826 \pm 0 \\ 0.869 \pm 0 \\ 1.109 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.891 \pm 0 \\ 0.858 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.868 \pm 0 \\ 0.863 \pm 0 \\ 0.863 \pm 0 \\ 0.950 \pm 0 \\ \end{array}$	0.06 0.06
Palmitic acid $(C_{16}H_{32}$ Methyl palmitate $(C_{17}$ Methyl linolenate $(C_{1}$ Phenol (C_6H_6O) Ethyl linoleate $(C_{20}H$ 9,12,15-octadecatrien Myristaldehyde $(C_{14}H$ 9,12,15-octadecatrien Guaiacol $(C_7H_8O_2)$ 11,14,17-Eicosatrienco Methol acetate $(C_{12}H$ Acetic acid 3, $(C_{22}H_{44}O_2)$ Methyl heptadecanoa Allyl stearate $(C_{21}H_{40})$ Methyl linoleate $(C_{19}H)$ Stigmast-5-en-3-ol, o Dioctyl adipate $(C_{22}H)$	$\begin{array}{c} D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{2} \\ D_{3} \\ D_{4} \\ D_{2} \\ D_{7} \\ H_{34} \\ O_{2} \\ D_{10} \\ H_{32} \\ D_{2} \\ D_{10} $	200.32 256.42 270.45 292.46 94.11 308.50 262.43 212.37 264.45 124.14 320.51 198.30 340.58 284.48 324.54 294.47 298.50 679.15 370.57	$\begin{array}{c} 1.447 \pm \\ 1.453 \pm \\ 1.441 \pm \\ 1.475 \pm \\ 1.553 \pm \\ 1.553 \pm \\ 1.465 \pm \\ 1.476 \pm \\ 1.476 \pm \\ 1.435 \pm \\ 1.485 \pm \\ 1.485 \pm \\ 1.475 \pm \\ 1.441 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.442 \pm \\ 1.464 \pm \\ 1.464 \pm \\ 1.509 \pm \\ 1.451 \pm \\ \end{array}$	0.02 0.03 0.02	33 33 30 31 40 31 31 31 29 32 38 31 31 29 30 30 30 30 30 30 31 30 38 33 28	$\begin{array}{c} 2 \pm 3.0 \\ 3 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .9 \pm 3.0 \\ .9 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .3 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .6 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .2 \pm 3.0 \\ .1 \pm 3$		$\begin{array}{c} 0.892 \pm 0\\ 0.892 \pm 0\\ 0.865 \pm 0\\ 0.895 \pm 0\\ 0.895 \pm 0\\ 0.863 \pm 0\\ 0.863 \pm 0\\ 0.863 \pm 0\\ 0.869 \pm 0\\ 1.109 \pm 0\\ 0.891 \pm 0\\ 0.917 \pm 0\\ 0.858 \pm 0\\ 0.868 \pm 0\\ 0.868 \pm 0\\ 0.868 \pm 0\\ 0.863 \pm 0\\ 0.863 \pm 0\\ 0.950 \pm 0\\ 0.929 \pm 0\\ \end{array}$	0.06 0.06

Phytol ($C_{20}H_{40}O$)296.53MW: molecular weight, RI: refractive index, ST: surface tension, ρ : density


 Table 6: Prediction of impurities in purified ethanolic extract

 of D. asper leaf

	Purification strategy					
Impurities	MW	RI	ST	ρ		
Ammonium carbamate	-	+	-	-		
1-Limonene	-	+	-	+		
p-Menth-1-ene	-	+	-	-		
2,6-Dimethoxyphenol	-	-	+	-		
n-Tetradecane	+	-	-	-		
n-Pentadecane	+	-	-	-		
n-Hexadecane	+	-	-	-		
2-heptadecanone	+	+	+	+		
2-Hexadecene, 3,7,11,15- tetramethyl-, [R-[R*,R*-(E)]]-	+	+	-	-		
Cyclopentolate	+	-	-	-		
n-Docosane	+	+	+	-		
Squalene	-	+	+	+		

+ Present ; - Absent

Fig 1: Profile of purified ethanolic extract of *D. asper* leaf using four purification principles

ACKNOWLEDGMENTS

This work was supported by the funding from Ministry of Agriculture Republic of Indonesia in the scheme of Collaborative Research between Ministry of Agriculture and Higher Education.

REFERENCES

- Choudhury D, Sahu JK, Sharma GD. Value addition to bamboo shoots: a review. J Food Sci Technol 2011. DOI 10.1007/s13197-011-0379-z.
- Tanaka A, Hyo JK, Oda S, Shimizu K, Kondo R. Antibacterial activity of moso bamboo shoot skin (*Phyllostachys pubescens*) against *Staphylococcus aureus*. J Wood Sci 2011;57:542-544.
- Satya S, Singhal P, Bal LM, Sudhakar P. Bamboo shoot: a potential source of food security. Mediterr. J. Nutr. Metab 2012;5:1-10.

- 4. Amu OO, Adetuberu AA. Characteristics of bamboo leaf ash stabilization on lateritic soil in highway construction. Int J Eng Technol 2010;2:212-219.
- 5. Rathod GP, Kotecha BM, Sharma R, Amin H, Prajapati PK. *In vitro* Antibacterial study of two commonly used medicinal plants in Ayurveda: Neem (*Azadirachta indica* L.) and Tulsi (*Ocimum sanctum* L.) Int J Pharm Biol Arch 2012;3:582-586.
- 6. Seki T, Maeda H. Cancer preventive effect of kumaizasa bamboo leaf extracts administered prior to carcinogenesis or cancer inoculation. *Anticancer Res* 2010;30:111-118.
- Ogunjinmi AA, Ijeomah HM, Aiyeloja AA. Socio-economic importance of bamboo (*Bambusa vulgaris*) in Borgu local government area of Niger State, Nigeria. J Sustainable Development in Africa 2009;10: 284-298.
- 8. Krisdianto, Sumarni G, Ismanto A. *Sari Hasil Penelitian Bambu.* Jakarta: Departemen Kehutanan; 2006.
- 9. Pandey AK, Ojha V. Precooking processing of bamboo shoots for removal of anti-nutrients. J Food Sci Technol 2011;DOI 10.1007/s13197-011-0463-4.
- 10. Satya S, Bal LM, Singhal P, Naik SN. Bamboo shoot processing: food quality and safety aspect (a review). Trends Food Sci Technol 2010;21:181-189.
- 11. Beauchamp CS, Sofos JN. Diarrheagenic *Escherichia coli*. In: Juneja VK, Sofos JN, editors. Pathogens and toxins in foods: challenges and interventions, 1st ed. Washington: ASM Pr; 2010. p. 71-94.
- 12. Salehi TZ, Bonab SF. Antibiotics susceptibility pattern of *Escherichia coli* strains isolated from chickens with colisepticemia in Tabriz province, Iran. Int. J. Poult. Sci 2006;5:677-684.
- Okeke IN, Fayinka ST, Lamikanra A. Antibiotic resistance in *Escherichia coli* from Nigerian students, 1986–1998. Emerg Infect Dis 2000;6:393-396.
- 14. Sharma A. Antimicrobial resistance: no action today, no cure tomorrow. Indian J Medical Microbiol. 2011;29:91-92.
- 15. Nascimento GGF, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on

antibioticresistant bacteria. Braz J Microbiol 2000;31:247-256.

- 16. Oyetayo VO, Dong CH, Yao YJ. Antioxidant and antimicrobial properties of aqueous extract from *Dictyophora indusiata*. Open Mycol J 2009;3:20-26.
- 17. Singh VK, Shukla R, Satish V, Kumar S, Gupta S, Mishra A. Antibacterial activity of leaves of bamboo. Int J Pharm Bio Sci 2010;6:1-5.
- Farmer III JJ, Davis BR. H7 Antiserumsorbitol fermentation medium: a single tube screening medium for detecting *Escherichia coli* 0157:H7 associated with hemorrhagic colitis. J Clin Microbiol 1985;22:620-625.
- 19. Coyle MB, editor. Manual of antimicrobial susceptibility testing. ASM. 2005
- 20. Kusmiyati, Agustini NWS. Uji aktivitas senyawa antibakteri dari mikroalga *Porphyridium cruentum. Biodiversitas* 2007;8:48-53.
- 21. Mulyono N, Wijaya CH, Fardiaz D, Rahayu WS. Identifikasi komponen kimia damar mata kucing (*Shorea javanica*) dengan metode pirolisis-GC/MS. *Jurnal Natur Indon* 2012;14:155-159.
- 22. Altman J. Using the cary spectrophotometer. protocols Altman Laboratory. Emory Vaccine Center; 2003.
- 23. Scorzoni L, Benaducci T, Almeida AMF, Silva DHS, Bolzani VS, Mendes-Giannini MJS. Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts *Candida* spp and *Cryptococcus* sp. Rev Ciênc Farm Básica Apl 2007;28:25-34.
- 24. Mihajilov-Krstev T, Radnović D, Kitić D, Stojanović-Radić Z, Zlatković В. Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains. Arch. Biol. Sci. 2010;62:159-166.
- 25. Desbois AP, Smith VJ. Antibacterial four free fatty acids: activities, mechanisms of action and biotechnological potential. University of St Andrews, Fife, KY16 9ST, UK; 2010.
- 26. Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove

from India. Braz J Microbiol 2007;38:739-742.

- 27. Khaliq-Uz-Zaman SM, Shameel S, Shameel M, Leghari SM, Ahmad VU. Bioactive compounds in *Chara coralline* var wallichii (A. Br.) R.D. Wood (Charophyta). Pak. J. Bot 1998;30:19-31.
- 28. Abitogun AS, Badejo OF. Physicochemical parameters and antimicrobial activities of oil extracted from ginger. Ethnobotanical Leaflets 2010;14:381-389.
- 29. Annamalai T, Nair MK, Marek P, Vasudevan P, Schreiber D, Knight R, Hoagland T, Venkitanarayanan K. In vitro inactivation of *Escherichia coli* O157:H7 in bovine rumen fluid by caprylic acid. J Food Prot 2004;67:884-888.
- Nair MK, Joy J, Vasudevan P, Hinckley L, Hoagland TA, Venkitanarayanan KS. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J Dairy Sci_2005;88:3488-3495.
- 31. Lawan K, Kanlayavattanakul M, Lourith N.. Antimicrobial efficacy of caprylyl glycol and ethylhexylglycerine in emulsion. J Health Res 2009;23:1-3.
- 32. Pubmed compound. Lauric acid -Compound Summary (CID 3893) (http://pubchem.ncbi.nlm.nih.gov/summar y/summary.cgi?cid=3893&loc=ec_rcs)
- Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang CM, Zhang L. The antimicrobial activity of liposomal lauric acids against *Propionibacterium acnes*. Biomater 2009;30:6035-6040.
- 34. Marounek M, Skrivanova E, Rada V. Susceptibility of *Escherichia coli* to C_{2} - C_{18} fatty acids. Folia Microbiol 2003;48:731-735.
- 35. Skrivanova E, Marounek M, Benda V, Brezina P. Susceptibility of *Escherichia coli*, *Salmonella* sp. and *Clostridium perfringens* to organic acids and monolaurin. Veterinarni Medicina 2006;51:81-88.
- 36. Pubmed compound. Guaiacol Compound Summary (CID 460) (http://pubchem.ncbi.nlm.nih.gov/summar y/summary.cgi?cid=460&loc=ec_rcs)
- 37. Pubmed compound. Phenol Compound Summary (CID 996).

http://pubchem.ncbi.nlm.nih.gov/summary /summary.cgi?cid=996&loc=ec_rcs

 Yayli N, Gulec C1, Ucuncu O1, Yasar A, Ulker S, Coskuncelebi K, Salih Terzioglu S. Composition and antimicrobial activities of volatile components of *Minuartia meyeri*. Turk J Chem 2006;30:71-76.