

ISSN 0976 - 3333

Available Online at www.ijpba.info

International Journal of Pharmaceutical & Biological Archives 2013; 4(1): 195-200

ORIGINAL RESEARCH ARTICLE

Analysis of Chemical Composition of Four Essential Oils by GC-MS and its Antibacterial Activity against Human Pathogenic Bacteria

R. R. Thanighaiarassu and P. Sivamani^{*}

Microlabs Institute of Research and Technology, Arcot - 632 503, Tamil Nadu, India

Received 08 Nov 2012; Revised 12 Feb 2013; Accepted 23 Feb 2013

ABSTRACT

The essential oils of four plants such as *Cymbopogon martini, Mentha piperita, Pelargonium graveolens* and *Rosemarinus officinalis* were selected for chemical analysis and antibacterial activity on selected opportunistic bacterial pathogens. The chemical composition of the oils was analyzed by GC - MS technique and many compounds were identified. The purity of these chemical compounds was tested by GC. Four chemical compounds geraniol, trans -geraniol, farnesol, citral and farnesol was chosen for *in vitro* antibacterial activity. The four plant essential oils chemical compounds geraniol, trans - geraniol, citral and farnesol were evaluvated by agar well diffusion method against five selected clinical isolates of bacterial species. All the four chemical compounds were more effective against *Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus* and *Bacillus cereus*. The present study suggested that these chemical compounds can be used in treating human diseases caused by the tested microorganisms.

Key words: Antibacterial activity, Essential oils, GC-MS and Salmonella typhi

1. INTRODUCTION

In the present time, drug resistance in microbes is a very serious problem. Hence, plant origin herbal medicines are considered as safe alternatives of synthetic drugs. There are varied methods of medicines like Aurveda, Homeopathy and Unani which utilize plant materials for drug production. Currently, Aurveda considered as a vital system of medicine and governed the worldwide recognition and having non-toxic substances. However, newly discovered non-antibiotic substances such as certain essential oils [1] and their constituent chemicals ^[2] have shown good fighting potential against drug resistant pathogens ^[3, 4]. Essential oils are aromatic oily liquids, which are obtained from various plant parts such as flowers, buds, seeds, leaves, twigs, bark, woods, fruits and roots by steam distillation. Scientifically, these oils have been proved highly potent antimicrobial agents in comparison to antibiotics. These plant essential oils are rich source of scents and used in food preservation and aromatherapy. These possess multiple antimicrobial i.e., antibacterial^[5], antifungal^[6], anticancer, antiviral and antioxidant properties ^[7, 8], against viruses, bacteria and fungi

^[9]. Some essential oils such as aniseed, calms, camphor, cedar-wood, cinnamon, eucalyptus, geranium, lavender, lemon, lemongrass, lime, mint, nutmeg, rosemary, basil, vetiver and winter green are traditionally used by people in different parts of the world. Cinnamon ^[10], clove, rosemary and lavender oils have showed both antibacterial and antifungal properties ^[11, 12, 13]. Besides this, Cinnamon oil possesses anti-diabetic and anti-inflammatory activity ^[14], while lemon, rosemary and peppermint exhibit anticancer activities ^[15]. Essential oils are concentrated, hydrophobic liquid

Essential oils are concentrated, hydrophobic liquid containing volatile aromatic compounds extracted from plants. They may provide potential alternatives to the control agents currently used because the compositions of essential oils are rich of bioactive chemicals and commonly used as fragrance and flavouring agents for food and beverage ^[16]. They were previously reported to have biological antibacterial activity ^[17].

2. MATERIALS AND METHODS Essential oils preparation

Air-dried to a constant weight, plant material (2 x 3 batches of about 500 g for each sample) was

subjected to hydrodistillation with approximately 2 L of distilled water for 2.5 hrs using the original Clevenger-type apparatus. The obtained oils were separated by extraction with freshly distilled dietyl ether (Merck, Germany), dried over anhydrous magnesium sulfate (Aldrich, USA) and immediately analyzed.

Chemicals and microorganisms

All chemicals with the highest purity available and culture media were purchased from Hi-media, Mumbai, Maharashtra (India). Salmonella typhi, Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli and Staphylococcus aureus (Clinical isolates) was used as test organisms. The bacterial cultures were obtained from Microlabs Institute of Research and Technology Arcot, Tamil Nadu (India).

Gas Chromatography-mass spectrometry

GC-MS was done at South Indian Textile Research Association Coimbatore, Tamil Nadu (India) and analysis was carried out using a Hewlett-Packard 5890/5971A system fitted with a HP1 column (50 m x 0.20 mm fused silica capillary column; film thickness, 0.5 µm). GC oven initial temperature was 60°C and was programmed to 220°C at a rate of 2°C/min and 220°C during 120 min under the following operation conditions: vector gas, He; injector and detector temperatures, 250°C; injected volume: 0.2 μ l, with a ratio split of 1/100. Retention indices were determined with Hexane standards as reference. The mass spectra were performed at 70 eV of the mass range of 35 - 400 amu. Identification of the constituents was based on comparison of the retention times with those of authentic samples and on computer matching against commercial (Wiley, MassFinder 2.1 Library, NIST98) and home - made libraries and MS literature data^[18, 19, 20, 21]

Gas chromatography

GC (FID) analyses were carried out under the same experimental conditions using the same column and same gas chromatograph type as described for the GC-MS. The percentage composition was computed from the GC peak areas without the use of correction factors. The results of four essential oils showed 99.99 % purity.

Determination of antibacterial activity

In this study, standard agar well diffusion method was followed ^[22, 23, 24, 25]. Antibacterial activity was performed for four essential oil chemical compounds Geraniol, Trans-geraniol, Farnesol and citral using bacterial cultures, *Salmonella* typhi, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus and Staphylococcus aureus as test organisms which are of clinical isolates. The well diffusion technique was performed for the essential oil chemical compounds with standard antibiotic disc at the concentration ciprofloxazin (15 μ g/mL) and nutrient broth cultures was swabbed on the surface on Muller Hinton agar. The results were recorded by measuring the zone of inhibition around the well and antibiotic disc. The experiments were done in triplicate.

Statistical analysis

Data were analyzed using analysis of variance (ANOVA) and differences among the means were determined for significance at P < 0.05 using Duncan's multiple range test (by SPSS software)Version 9.1.

3. RESULTS AND DISCUSSION

Chemical composition of essential oils of GC-MS

Chemical compositions of essential oils are shown in (**Table 1 to 4**). As seen, major components of *Cymbopogon martinii* oil, *Mentha piperita* oil, *Pelargonium graveolens* and *Rosemarinus officinalis* were: Geranyl acetate (0.37%), farnesol (0.37%), trans-Geraniol (0.37%) and farnesol (0.19%), 2Z,6E- Farnesol (0.19%), d-Nerolidol (0.19%) and farnesol (0.36%), trans-Geraniol (0.36%), cis-Farnesol (0.36%) and Geraniol (0.04%), trans-Geraniol (0.04%), Cyclopentane, bromo- (CAS) (0.04%), respectively.

Antibacterial activity in vitro

Each essential oils chemical compounds showed notable antibacterial activities against Salmonella typhi, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus and Escherichia coli. In (Figure 1), Farnesol was very highly active against Escherichia coli (9.30 \pm 0.44) and least against Bacillus cereus (3.00 ± 0.10). Geraniol was highly active against Salmonella typhi (6.00 \pm 0.00) and least against *Escherichia coli* (3.00 \pm 0.00) (Figure 2). Trans-geraniol was highly active against Staphylococcus aureus (5.00±0.00) and least against Salmonella typhi (2.00±0.00) (Figure 3). Geranyl acetate showed high activity against Salmonella typhi (11.00 \pm 0.28) and low activity against *Bacillus cereus* (7.00 ± 0.17) (Figure 4). Citral showed very high activity against *Bacillus* cereus (30.00±0.57) and low activity against Salmonella typhi (9.00±0.28) (Figure 5). All bacteria were found to be sensitive to all test essential oils chemical compounds and mostly comparable to the standard reference antibacterial drug ciprofloxazin was highly effective.

P. Sivamani / Analysis of Chemical Composition of Four Essential Oils by GC-MS and its Antibacterial Activity against Human Pathogenic Bacteria

Table 1:	Chemical	composition	of Cymbopogon	<i>martinii</i> oil
Lable L.	Chemical	composition	or cymoopogon	man min on

Compound name	Retention time (min)	Amount %
Neryl acetate	16.11	0.37
Lavanduyl acetate	16.11	0.37
Trans sesquilavandulol	16.11	0.37
Neryl propionate	16.11	0.37
Geranyl acetate	16.11	0.37
Cis- farnesol	16.11	0.37
3,7-Dimethyl-2,6-octadien-1-yl propionate	16.11	0.37
Geranyl propionate	16.11	0.37
Farnesol	16.11	0.37
Cyclohexene, 1-methyl-4-(1- methylethenyl)-, (R)-(CAS)	16.11	0.37
Nerol (CAS)	16.11	0.37
Trans-geraniol	16.11	0.37
a – Citronellol	29.33	0.06
Citral	22.44	0.59

 Table 2: Chemical composition of Mentha piperita oil

Compound name	Retention time (min)	Amount %
Farnesol	16.08	0.19
d-Nerolidol	16.08	0.19
Nerolidol isomer	16.08	0.19
(-)-Nerolidol	16.08	0.19
Nerolidol	16.08	0.19
2Z,6E- Farnesol	16.08	0.19
Cis-sesquilavandulol	16.08	0.19
Nerolidol Z and E	16.08	0.19
(Z)-2-(Propen-2'-yl)oct-2-en-1-ol	16.08	0.19

Table 3: Chemical composition of *Pelargonium graveolens* oil

Table 3: Chemical composition of <i>Petargonium graveolens</i> of				
Compound Name	Retention time(min)	Amount %		
Neryl acetate	8.87	0.36		
Farnesol	8.87	0.36		
Lavanduyl acetate	8.87	0.36		
Cyclohexene, 4-ethenyl-1,4-dimethyl-	8.87	0.36		
(CAS)				
Trans –geraniol	8.87	0.36		
Trans-sesuilavandulol	8.87	0.36		
Geranyl propionate	8.87	0.36		
Cis-farnesol	8.87	0.36		
Geranyl acetate	8.87	0.36		
Citral	11.38	3.45		

Table 4: Chemical composition of Rosemarinus officinalis oil

Compound name	Retention time (min)	Amount %
3-methyl-3-nitro-1-butene	28.33	0.04
Trans-geraniol	28.33	0.04
Geranyl acetate	28.33	0.04
Farnesol	28.33	0.04
Geraniol	28.33	0.04
Cyclopentane, bromo- (CAS)	28.33	0.04
2Z,6E-Farnesol	28.33	0.04
Trans sesquilavandulol	28.33	0.04
Cis-farnesol	28.33	0.04
Neryl acetate	28.33	0.04
dl-lemonene	28.33	0.20

Fig 1: Inhibition of growth of selected bacteria by essential oils chemical compound farnesol

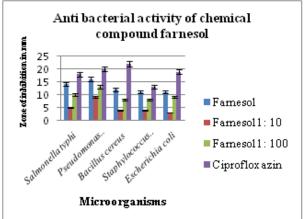


Fig 2: Inhibition of growth of selected bacteria by essential oils chemical compound Geraniol

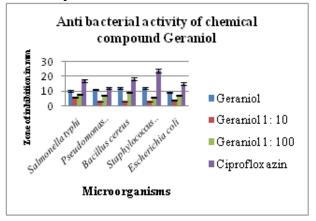


Fig 3: Inhibition of growth of selected bacteria by essential oils chemical compound trans-geraniol

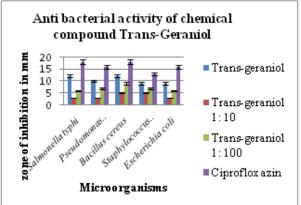
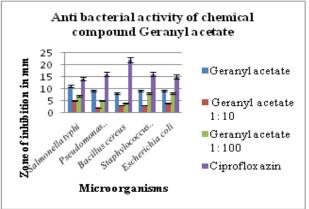
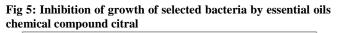
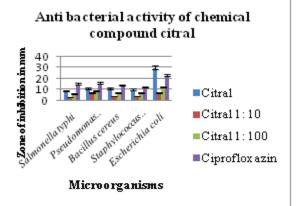





Fig 4: Inhibition of growth of selected bacteria by essential oils chemical compound geranyl acetate

P. Sivamani / Analysis of Chemical Composition of Four Essential Oils by GC-MS and its Antibacterial Activity against Human Pathogenic Bacteria

4. DISCUSSION

Plant essential oils and extracts have been used for many thousands of years ^[26] in food preservation, pharmaceuticals alternative medicine and natural therapies ^[27, 28]. It is necessary to investigate those plants scientifically which have been used in traditional medicine to improve the quality of healthcare. Essential oils are potential sources of novel antimicrobial compounds ^[29] especially against bacterial pathogens. *In vitro* studies in this work showed that the essential oils inhibited bacterial growth but their effectiveness varied. The antimicrobial activity of many essential oils has been previously reviewed and classified as strong, medium or weak ^[30].

An important characteristic of essential oils and their components is their hydrophobicity, which enable them to partition the lipids of the bacterial cell membrane and mitochondria, disturbing the cell structures and rendering them more permeable ^[31, 32]. Extensive leakage from bacterial cells or the exit of critical molecules and ions will lead to death ^[33]. Gram positive bacteria were more resistant to the essential oils than Gram negative bacteria ^[34]. In the present study, cinnamon, lime, geranium rosemary, orange, lemon and clove oils were found to be equally effective against both Gram positive and Gram negative organisms.

Various essential oils obtained from the plants showed antimicrobial activity against a range of microorganisms including Gram positive bacteria, Gram negative bacteria and fungi. However, the differences may be explained by susceptibility, testing conditions, physico-chemical characteristics of the oil and strain differences ^[35]. The earlier studies on essential oil of Pelargonium sp. Rajeswara Rao et al. [36] reported that the terpenoid composition of the essential oil was strongly influenced by the seasonal climatic changes. During the summer citronellol (40.80%) and linalool (13.27%) were the main component; wile during the winter geraniol (26.62%) was the main compound. when the chemical profile of the studied essential oil is compared to previously studied essential oil of Pelargonium sp. from Portugal ^[37], it appears that citronellol (26.9%) and citronellylformate (13.2%) were the main components, while in comparison with our sample the second component is totally absent. The essential oil composition of *Pelargonium* sp. cultivar 'Kelkar', grown in the agroclimatic conditions of the western Himalayas, showed that citronellol (36.79%) and geraniol (22.12%) were present in high amounts ^[38]. However, the composition of the essential oil of Indian pelargonium showed that geraniol (21.3 – 38.4%) and linalool (14.7 – 19.6%) were the major constituents ^[39]. It is previously mentioned that the essential oil of *P. graveolens* exhibit a significant antibacterial activity against five strains of *Candida albicans* ^[40] and against *Bacillus subtilis* ^[41].

5. CONCLUSION

In present study, the four essential oils chemical compounds geraniol, trans-geraniol, geranyl acetate, citral and farnesolshown very high antibacterial activity at low concentrations. These chemical compounds were identified by GC-MS and the purity of these essential oils chemical compounds was tested by GC. The antibacterial activity of these chemical compounds may be due to the presence of various active principles in their leaves. Further studies are needed to isolate and characterize the bioactive principles to develop new antibacterial drugs.

ACKNOWLEDGEMENTS

The authors thank South Indian Textile Research Association Coimbatore, Tamil Nadu (India) for GC-MS and Sargham laboratories Chennai, Tamil Nadu (India) for GC

REFERENCES

- Sonboli, A., B. Babakhani and A.R. Mehrabian, 2006.Antimicrobial activity of six constituents of essential oil from *Salvia*.ZeitschriftfürNaturforschung C, 61: 160-164.
- Chavan, M.J., D.B. Shinde and S.A. Nirmal. 2006. Major volatile constituents of *Annona squamosa* L. bark. Nat. Prod. Res., 20: 754 - 757.
- Cowan, M.M. 1999. Plant products as antimicrobial agents. Clin. Microbiol., 12: 564 -582.
- Ahmad, A and A.Z. Beg. 2001. Antimicrobial and phytochemical studies on 45th Indian medicinal plants against multi- drug resistant human pathogens. J. Ethnopharmocol., 74: 113 - 123.
- Ozcan, M.M. L. Sagdic and O. Ozkan, 2006.Inhibitory effects of spice essential oils on the growth of *Bacillus* species. J. M ed. Food, 9: 418-421 50:1025-1040
- 6. Cafarchia, C., N. De-Laurentis, M. A. Milillo, V. Losacco and V. Puccini. 2002.

Antifungal activity of essential oils from leaves and flower of *Inula viscose* (Asteraceae) by Apulian region Parasitologia, 44: 153-156.

- Salehi, P., A. Sonboli, F. Eftekhar, S. Nejad-Ebrahimi and M. Yousefzadi, 2005. Essential oil composition, antibacterial and antioxidant activity of the oil and various extracts of *Ziziphoraclinopodioidies*. Subsprigida (Boiss.)*Rech.f.* from Iran. Biol. Pharm. Bull., 28: 1892-1896.
- 8. Vardar-Unlu, G., F. Candan, A. Sokmen, D. Daferera M. Polissiou, M. Sokmen, E. Donmez and B. Tepe, 2003. Antimicrobial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinatusFish. Et Mey. Var. Pectinatus(Lamiaceae). J. Agr. Food Chem., 51: 63-67.
- 9. Kalemba, D. and A. Kunicka, 2003.Antibacterial and antifungal properties of essential oils. Curr. Med. Chem., 10: 813-829.
- Prabuseenivasn, S., M. Jayakumar and S. Ignacimuthu 2006.*In vitro* antibacterial activity of some plant essential oils.BMC Complem. Altern. M., 30: 6-39
- Quale, J.M., S.D. Landman M.M. Zamab, S. Burney and S.S. Sathe, 1996.*In vitro* activity of *Cinnamomum*resistant and sensitive *Candida* species and a pilot study of cinnamon for oral candiasis. Am. J. Chinese Med., 24: 103-109.
- Chang, S.T., P.F. Chen and S.C. Chang. 2001. Antibacterial activity of leaf essential oil and their constituents from *Cinnamomum osmophloeum*. J. Ethopharmacol., 77: 123 -127.
- Wilkinson, J.M. and H.M. Cavanagh, 2005.Antibacterial activity of essential oils from Australian native plants. Phytotherapic Res., 19: 643-646.
- 14. Mitra, S.K., R. Sundaram, M.V. Venkataranganna, S. Gopumadhavan, N.S. Prakash, H.D. Jayaram and D.N. Sarma, 2000. Anti-inflammatory, antioxidant and antimicrobial activity of Ophthacare brand, an herbal eye drops. Phytomedicine, 7: 123-127.
- Imai, H., K. Osawa, H. Yasuda, H. Hamashima, T. Arai and M. Sasatu, 2001.Inhibition by essential oils of peppermint and spearmint of the growth of pathogenic bacteria.Microbios, 1: 31-39.

- Isman, M.B. 2000.Plant essential oils for pest and disease management.*Crop Prot.* 19:603-608
- 17. Dorman, H.J.D and Deans, S.G. 2000. Antimicrobial agents from plants: antibacterial activity of Volatile oils. J. Appl. Microbial., 95: 853-860.
- McLafferty FW, Stauffer DB (1989). The Wiley/NBS Registry of Mass spectral Data. J. Wiley and Sons, New York.
- 19. Adams, R.P. 1995. Identification of essential oils components by gas chromatography/ mass spectroscopy. Carol Stream, IL: Allured Publishing Corporation.
- 20. Joulain D, König WA, Hochmuth DH (2001). Terpenoids and related constituents of essential oils. Hamburg, Germany: Library of MassFinder 2.1.
- 21. Joulain D, König WA (1998). The atlas of spectral data of sesquiterpene hydrocarbons. E.B.-Verlag, Hamburg.
- Perez, C., Pauli, M., Bazerque, P., (1990).An antibiotic assay by the agarwell diffusion method.Acta Biol. Med. Exp. 15, 13–115.
- 23. Perez, C., Agnese, A.M., Cabrera, J.L., (1999). The essential oil of Seneciograveolens (Compositae): chemical composition and antimicrobial activity tests. J. Ethnopharmacol. 66, 91–96.
- Erdemogllu, N., Ku[•] peli, E., Yes_ilada, E., (2003). Anti-inflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine. *J. Ethnopharmacol.* 89, 123– 129.
- 25. Bagamboula, C.F., Uyttendaele and M., Debevere, J. 2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p- cymene towards *Shigella sonnei* and *S. flexneri*. *Food Microbiol.*, 21: 33 - 42.
- 26. Jones FA: Herbs useful plants. Their role in history and today.*Euro J GastroenterolHepatol*1996, 8:1227-1231
- Reynolds JEF: Martindale the Extra Pharmacopoeia. 31st edition. London. Royal Pharmaceutical Society of Great Britain; 1996.
- 28. Lis-Balchin M, Deans SG: Bioactivity of selected plant essential oils against *Listeria*

UPBA, Jan - Feb, 2013, Vol. 4, Issue,

monocytogenes. J ApplBacteriol1997, 82:759-762.

- 29. Mitscher LA, Drake S, Gollapudi SR, Okwute SK: A modern look at folkloric use of anti-infective agents. *J Nat Prod* 1987,
- 30. Zaika LL: Spices and herbs: their antibacterial activity and its determination. *J Food Saf*1988, 23:97-118.
- 31. Knobloch K, Weigand H, Weis N, Schwarm H-M, Vigenschow H: Action of terpenoids on energy metabolism. In Progress inEssential Oil Research: 16th International Symposium on Essential Oils Edited by: Brunke EJ. De Gruyter, Berlin; 1986:429 - 445.
- 32. Sikkema J, De Bont JAM, Poolman B: Interactions of cyclic hydrocarbons with biological membranes. *J BiolChem*1994, 269: 8022 - 8028.
- 33. Denyer, S. P and Hugo, W. B. Biocideinduced damage to the bacterial cytoplasmic membrane. In Mechanisms of Action of Chemical Biocides Edited by: Denyer SP, Hugo WB. The Society for Applied Bacteriology, Technical Series No 27.Oxford Blackwell Scientific Publication, Oxford; 1991:171-188.
- 34. Zaika LL: Spices and herbs: their antibacterial activity and its determination. *J Food Saf*1988, 23:97-118.
- 35. Badar, N., M. Arshad and U. Farooq. 2008. Characteristics of Anethum (Umbelliferae) Seed graveolens Oil: Extraction, Composition and Antimicrobial Activity. International Journal of Agriculture & Biology, 10(3): 329 - 332.

- 36. RajeswaraRao, B.R., P.N. Kaul, G.R. Mallavarapus and S. Rameshs, 1996.Effect of Seasonal Climatic Changes on BiomassYield and Terpenoid Composition of Rose-scented Geranium (*Pelargonium* species). Biochemical Systematical and Ecology, 24 (7-8): 627-635.
- 37. Gomes, P.B., V.G. Mata and A.E. Rodrigues, 2007.Production of rose geranium oil using supercritical fluid extraction. Journal of Supercritical Fluids, 41: 50–60.
- 38. Babu K.G.D and V.K. Kaul. 2005. Variation in essential oil composition of rose - scented geranium (*Pelargonium* sp.) distilled by different distillation. Flavour and Fragrance Journal, 20: 222 – 231.
- RajeswaraRao, B.R., P.N. Kaul, K.V. Syamasundar and S. Rameshs, 2002.Water soluble fractions of rose-scented geranium (*Pelargonium* species) essential oil.Bioresource Technology, 84, 243–246
- 40. Rosato, A., C. Vitali, N. De Laurentis, D. Armenise and M.A. Milillo, 2007. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin, Phytomedicine, 14: 727–732.